一个小球从100米空中落下,每次反弹一半高度,小球总共经过多少米,请问第10次反弹的高度是多少

本文介绍了一种计算小球多次弹跳总路径长度的方法,包括递归与循环两种实现方式。递归方法通过调用自身函数计算不同弹跳次数的路径长度;循环方法则通过迭代更新累计路径长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用递归解决该问题。

double tang(int n,double sum,double k){//n为需要的反弹次数,题目为10
        if(n<10){
        tang(n+1,sum+k*2,k/2);
        }else{
        printf("小球第%d次落地时路过的路径为%lf米,再弹起时高度为:%lf米\n",n,sum,k);
}
}

int main(){
    tang(1,100,50);//第一次时的值
    return 0;
}
如不使用递归,可以用循环解决。
int main(){
    int n,i;
    double sum,j=50;
    scanf("%d",&n);//输入需要的反弹次数
    for(i=1;i<=n;i++) {
        if(i==1){
            sum=100;//第一次落地
        }else{
            sum+=j*2;
            j=j/2;
        }
    }
    printf("第%d次落地小球路过的路径为:%.6lf,再弹起高度为:%.6lf\n",n,sum,j);
} 
本题可以知道,第一次落地时为100,反弹为50,之后每次多增加的经过量等于小球反弹的高度*2,反弹高度为上一次高度的二分之一。
这是一个有趣的数学计算问题,可以用简单的循环结构解决。以下是具体的分析步骤: ### 分析过程 1. 小球第一下落的距离是 **100m**。 2. 第一反弹后的高度变为原来的 **一半 (50m)**,之后再下落到地面,累计增加距离 **100 + 50 * 2 = 200m**。 3. 接下来每一反弹高度都是上一一半,并且每完成一“弹起+落下”的完整动作会累加两倍当前反弹高度。 因此我们可以总结出规律: 总路程可以表示为初始值 `100` 加上后续所有反弹的双倍路径之和。 --- ### 程序实现思路 ```c #include <stdio.h> int main() { double height = 100; // 初始高度 int times = 10; // 落地数限制 double total_distance = 0; for(int i = 1; i <= times; i++) { if(i == 1) { total_distance += height; } else { total_distance += height * 2; } height /= 2; // 每次反弹到原来的一半高度 } printf("小球在第%d落地时总共经过 %.2f 。\n", times, total_distance); return 0; } ``` 运行结果将是: ``` 小球在第10落地时总共经过 299.61 。 ``` --- ### 解答说明 上述程序的核心在于通过for循环模拟了十小球运动轨迹变化情况。首直接加上原始坠落高度即可;其余每次迭代都需将反弹上升与随后下降两个阶段考虑进去并加入总计数器之中,同时更新新的起点即减半高程位置准备进入下一周期计算直至达到第十轮为止停止运算得出最终数值约等于近似值299.61
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值