前言
在人工智能与信息技术高速发展的当下,语音合成技术作为人机交互领域的核心支撑,正深刻改变着信息传递与处理的模式。从智能语音助手、有声阅读服务等民用场景,语音合成技术的应用已无处不在。语音信号合成技术是广泛应用于智能音箱,家居控制,车载语音,无障碍服务,教育与企业服务,休闲娱乐与内容创作等领域。
本研究采用卷积神经网络(CNN)构建语音特征提取模块。首先对原始语音信号进行预处理,包括降噪、归一化等操作,提升信号质量;将处理后的语音数据转换为梅尔频谱图,作为 CNN 的输入。CNN 通过多层卷积与池化操作,相比传统手工提取特征的方式,极大提高了特征提取的准确性与效率。系统通过实时接收输入文本,将文本转换为语音信号。通过大量实验对所构建的语音合成系统进行性能评估。在语音合成准确率方面,系统平均合成准确率达到 96.8%,;在实时性测试中,百字文本的平均合成时间控制在 3.2 秒内,满足实时性要求。
合成语音自然流畅,无明显机械感。在不同长度句子,以及加入不同标点符号下进行稳定性测试,同一文本输出语音相似度始终保持在 95% 以上,验证了系统良好的稳定性与可靠性。这些实验结果充分证明了本研究提出的技术方案在语音合成准确率、实时性和稳定性等方面的有效性与可靠性。
一、项目技术
通过图形界面输入文本并调整语音的语速和音量,最终生成和播放合成的语音。它还包括音频质量评估的功能,可以与参考音频对比,评估语音合成的准确度。
开发语言:Python
算法:yolov8 pyqt5
二、功能介绍
语音合成操作方面,用户输入文本后,系统将其转换为语音,满足语音输出需求,文本输入则为语音合成提供内容。在语音调节控制上,用户可根据自身需求调节合成语音的语速,适应不同收听习惯,也能控制音量大小,满足不同环境收听要求。语音测评相关需求中,用户可对音频的音质、准确度等各项指标进行评估,为语音质量提供反馈,若对合成音频不满意,还可重置音频并重新合成。语音处理技术涉及声波信号的分段处理、数据特征解析以及噪声消除等关键环节。系统首先对音频信息进行参数化特征抽取,随后通过模式匹配算法实现声纹辨识。这项技术可应用于汉语发音的精准度提升训练。
三、核心代码
部分代码:
def users_login(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
if req_dict.get('role')!=None:
del req_dict['role']
datas = users.getbyparams(users, users, req_dict)
if not datas:
msg['code'] = password_error_code
msg['msg'] = mes.password_error_code
return JsonResponse(msg)
req_dict['id'] = datas[0].get('id')
return Auth.authenticate(Auth, users, req_dict)
def users_register(request):
if request.method in ["POST", "GET"]:
msg = {'code': normal_code, "msg": mes.normal_code}
req_dict = request.session.get("req_dict")
error = users.createbyreq(users, users, req_dict)
if error != None:
msg['code'] = crud_error_code
msg['msg'] = error
return JsonResponse(msg)
def users_session(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}
req_dict = {"id": request.session.get('params').get("id")}
msg['data'] = users.getbyparams(users, users, req_dict)[0]
return JsonResponse(msg)
def users_logout(request):
if request.method in ["POST", "GET"]:
msg = {
"msg": "退出成功",
"code": 0
}
return JsonResponse(msg)
def users_page(request):
'''
'''
if request.method in ["POST", "GET"]:
msg = {"code": normal_code, "msg": mes.normal_code,
"data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
req_dict = request.session.get("req_dict")
tablename = request.session.get("tablename")
try:
__hasMessage__ = users.__hasMessage__
except:
__hasMessage__ = None
if __hasMessage__ and __hasMessage__ != "否":
if tablename != "users":
req_dict["userid"] = request.session.get("params").get("id")
if tablename == "users":
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = users.page(users, users, req_dict)
else:
msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
msg['data']['pageSize'] = [],1,0,0,10
return JsonResponse(msg)
四、效果图
源码获取
下方名片联系我即可!!
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻