基于python的语音合成实现


前言

   在人工智能与信息技术高速发展的当下,语音合成技术作为人机交互领域的核心支撑,正深刻改变着信息传递与处理的模式。从智能语音助手、有声阅读服务等民用场景,语音合成技术的应用已无处不在。语音信号合成技术是广泛应用于智能音箱,家居控制,车载语音,无障碍服务,教育与企业服务,休闲娱乐与内容创作等领域。
本研究采用卷积神经网络(CNN)构建语音特征提取模块。首先对原始语音信号进行预处理,包括降噪、归一化等操作,提升信号质量;将处理后的语音数据转换为梅尔频谱图,作为 CNN 的输入。CNN 通过多层卷积与池化操作,相比传统手工提取特征的方式,极大提高了特征提取的准确性与效率。系统通过实时接收输入文本,将文本转换为语音信号。通过大量实验对所构建的语音合成系统进行性能评估。在语音合成准确率方面,系统平均合成准确率达到 96.8%,;在实时性测试中,百字文本的平均合成时间控制在 3.2 秒内,满足实时性要求。
合成语音自然流畅,无明显机械感。在不同长度句子,以及加入不同标点符号下进行稳定性测试,同一文本输出语音相似度始终保持在 95% 以上,验证了系统良好的稳定性与可靠性。这些实验结果充分证明了本研究提出的技术方案在语音合成准确率、实时性和稳定性等方面的有效性与可靠性。

一、项目技术

通过图形界面输入文本并调整语音的语速和音量,最终生成和播放合成的语音。它还包括音频质量评估的功能,可以与参考音频对比,评估语音合成的准确度。

开发语言:Python
算法:yolov8 pyqt5

二、功能介绍

语音合成操作方面,用户输入文本后,系统将其转换为语音,满足语音输出需求,文本输入则为语音合成提供内容。在语音调节控制上,用户可根据自身需求调节合成语音的语速,适应不同收听习惯,也能控制音量大小,满足不同环境收听要求。语音测评相关需求中,用户可对音频的音质、准确度等各项指标进行评估,为语音质量提供反馈,若对合成音频不满意,还可重置音频并重新合成。语音处理技术涉及声波信号的分段处理、数据特征解析以及噪声消除等关键环节。系统首先对音频信息进行参数化特征抽取,随后通过模式匹配算法实现声纹辨识。这项技术可应用于汉语发音的精准度提升训练。

三、核心代码

部分代码:


def users_login(request):
    if request.method in ["POST", "GET"]:
        msg = {'code': normal_code, "msg": mes.normal_code}
        req_dict = request.session.get("req_dict")
        if req_dict.get('role')!=None:
            del req_dict['role']
        datas = users.getbyparams(users, users, req_dict)
        if not datas:
            msg['code'] = password_error_code
            msg['msg'] = mes.password_error_code
            return JsonResponse(msg)

        req_dict['id'] = datas[0].get('id')
        return Auth.authenticate(Auth, users, req_dict)


def users_register(request):
    if request.method in ["POST", "GET"]:
        msg = {'code': normal_code, "msg": mes.normal_code}
        req_dict = request.session.get("req_dict")

        error = users.createbyreq(users, users, req_dict)
        if error != None:
            msg['code'] = crud_error_code
            msg['msg'] = error
        return JsonResponse(msg)


def users_session(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code,"msg":mes.normal_code, "data": {}}

        req_dict = {"id": request.session.get('params').get("id")}
        msg['data'] = users.getbyparams(users, users, req_dict)[0]

        return JsonResponse(msg)


def users_logout(request):
    if request.method in ["POST", "GET"]:
        msg = {
            "msg": "退出成功",
            "code": 0
        }

        return JsonResponse(msg)


def users_page(request):
    '''
    '''
    if request.method in ["POST", "GET"]:
        msg = {"code": normal_code, "msg": mes.normal_code,
               "data": {"currPage": 1, "totalPage": 1, "total": 1, "pageSize": 10, "list": []}}
        req_dict = request.session.get("req_dict")
        tablename = request.session.get("tablename")
        try:
            __hasMessage__ = users.__hasMessage__
        except:
            __hasMessage__ = None
        if __hasMessage__ and __hasMessage__ != "否":

            if tablename != "users":
                req_dict["userid"] = request.session.get("params").get("id")
        if tablename == "users":
            msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
            msg['data']['pageSize'] = users.page(users, users, req_dict)
        else:
            msg['data']['list'], msg['data']['currPage'], msg['data']['totalPage'], msg['data']['total'], \
            msg['data']['pageSize'] = [],1,0,0,10

        return JsonResponse(msg)


四、效果图

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

源码获取

下方名片联系我即可!!


大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕业程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值