数据分析处理库-Pandas

Pandas 是一个强大的数据分析库,提供高效的数据操作工具,包括数据读取、索引计算、预处理等功能。通过使用Pandas,可以方便地读取CSV数据、进行数据排序、统计缺失值、计算平均数等。Pandas的核心结构DataFrame由一系列Series组成,而Series则由ndarray结构构成,支持丰富的数据处理操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pandas (数据分析处理库)

Pandas:纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。提供了大量能使我们快速便捷地处理数据的函数和方法。

1.Pandas数据读取

1.1 Pandas读数据
import pandas
food_info = pandas.read_csv("food_info.csv")
print("---------food_info-------")
print(type(food_info))
print("---------food_info.shape-------")
print(food_info.shape)
print("---------food_info.values-------")
print(food_info.values)
print("---------food_info.dtypes-------")
print(food_info.dtypes)
print(help(pandas.read_csv))
#默认打印前5条数据
print(food_info.head())
print(food_info.tail())
#打印所有列名
print(food_info.columns)
1.2 Pandas读取列数据
print (food_info["Iron_(mg)"])
print("------------------")
div_1000 = food_info["Iron_(mg)"]/1000
print (div_1000)

2.Pandas索引与计算

# 2.1 获取索引为0的元素
print(food_info.loc[0])
#获取多条
print(food_info.loc[[2,5,10]])

NDB_No                         1001
Shrt_Desc          BUTTER WITH SALT
Water_(g)                     15.87
Energ_Kcal                      717
Protein_(g)                    0.85
Lipid_Tot_(g)                 81.11
Ash_(g)                        2.11
Carbohydrt_(g)                 0.06
Fiber_TD_(g)                      0
Sugar_Tot_(g)                  0.06
Calcium_(mg)                     24
Iron_(mg)                      0.02
Magnesium_(mg)                    2
Phosphorus_(mg)                  24
Potassium_(mg)                   24
Sodium_(mg)                     643
Zinc_(mg)                      0.09
Copper_(mg)                       0
Manganese_(mg)                    0
Selenium_(mcg)                    1
Vit_C_(mg)                        0
Thiamin_(mg)                  0.005
Riboflavin_(mg)               0.034
Niacin_(mg)                   0.042
Vit_B6_(mg)                   0.003
Vit_B12_(mcg)                  0.17
Vit_A_IU                       2499
Vit_A_RAE                       684
Vit_E_(mg)                     2.32
Vit_D_mcg                       1.5
Vit_D_IU                         60
Vit_K_(mcg)                       7
FA_Sat_(g)                   51.368
FA_Mono_(g)                  21.021
FA_Poly_(g)                   3.043
Cholestrl_(mg)                  215
Name: 0, dtype: object
#2.2 根据列名获取列
#获取单列
print(food_info["NDB_No"])
#获取多列
print(food_info[["NDB_No","Water_(g)"]])

0        1001
1        1002
2        1003
3        1004
4        1005
5        1006
6        1007
7        1008
8        1009
9        1010
10       1011
11       1012
12       1013
13       1014
14       1015
15       1016
        ...  
8608    44258
8609    44259
8610    44260
8611    48052
8612    80200
8613    83110
8614    90240
8615    90480
8616    90560
8617    93600
Name: NDB_No, Length: 8618, dtype: int64
#2.3 获取以克结尾的列
col_names = food_info.columns.tolist()
print(col_names)

gram_colmns = []
for c in col_names:
    if c.endswith("(g)"):
        gram_colmns.append(c)
gram_df = food_info[gram_colmns]
print(gram_df.head(3))
#2.4 新增加一列
water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]
iron_grams = food_info["Iron_(mg)"]/1000
print(food_info.shape)
food_info["Iron_(g)"] = iron_grams
print(food_info.shape)

3.数据预处理

#3.1 排序 从小到大
#inplace=True:不创建新的对象,直接对原始对象进行修改;
#inplace=False:对数据进行修改,创建并返回新的对象承载其修改结果
food_info.sort_values("Sodium_(mg)",inplace = True)
print (food_info["Sodium_(mg)"])
#排序 从大到小
food_info.sort_values("Sodium_(mg)",inplace = True,ascending = False)
print ("-----------------------")
print (food_info["Sodium_(mg)"])

    NDB_No             Shrt_Desc  ...  FA_Poly_(g)  Cholestrl_(mg)
2     1003  BUTTER OIL ANHYDROUS  ...        3.694           256.0
5     1006           CHEESE BRIE  ...        0.826           100.0
10    1011          CHEESE COLBY  ...        0.953            95.0
#3.2 统计缺失值
import pandas as pd
import numpy as np
titanic_survival = pd.read_csv("titanic_train.csv")
titanic_survival.head()

age = titanic_survival["Age"]
age_is_null = pd.isnull(age)
age__null_true = age[age_is_null]
age_null_count = len(age__null_true)
print(age_null_count)
#3.3 算不缺失值 的平均数
good_ages = titanic_survival["Age"][age_is_null == False]
correct_mean_age = sum(good_ages) / len(good_ages)
print (correct_mean_age)
#3.4 算不缺失值 的平均数
correct_mean_age = titanic_survival["Age"].mean()
print (correct_mean_age)
#3.5 算不同舱位 价格的平均数
passenger_classes = [1,2,3]
fares_by_class = {}
for this_class in passenger_classes:
    pclass_rows = titanic_survival[titanic_survival["Pclass"] == this_class]
    pclass_fares = pclass_rows["Fare"]
    fare_for_class = pclass_fares.mean()
    fares_by_class[this_class] = fare_for_class
print (fares_by_class)

{1: 84.15468749999992, 2: 20.66218315217391, 3: 13.675550101832997}
#3.6 统计不同船仓的获救率
#以Pclass为基础,求Survived的获救率
passenger_survival = titanic_survival.pivot_table(index="Pclass",values="Survived",aggfunc=np.mean)
print (passenger_survival)

Pclass     Survived     
1      	   0.629630
2          0.472826
3          0.242363
#3.7 统计不同船仓与年龄之间关系
passenger_age = titanic_survival.pivot_table(index="Pclass",values="Age")
print (passenger_age)

Pclass    Age       
1       38.233441
2       29.877630
3       25.140620
#3.8 不同登船地点与车票和获救关系
#登船在C地点,共收10072.2962  获救93
port_stats = titanic_survival.pivot_table(index="Embarked",values=["Fare","Survived"],aggfunc=np.sum)
print (port_stats)

 Embarked    Fare  Survived    
C         10072.2962        93
Q          1022.2543        30
S         17439.3988       217
#3.9 把年龄和性别为空的去掉
#dropna函数
new_titanic_survival = titanic_survival.dropna(axis=0,subset=["Age","Sex"])
print(new_titanic_survival)
#3.10 查看83号样本的年纪和766号的船仓
row_index_83_age = titanic_survival.loc[83,"Age"]
row_index_1000_pclass = titanic_survival.loc[766,"Pclass"]
print (row_index_83_age)
print (row_index_1000_pclass)

28.0
1
#3.11 重新编辑索引
#reset_index函数
new_titanic_survival = titanic_survival.sort_values("Age",ascending=False)
print (new_titanic_survival[0:10])
titanic_reindexed = new_titanic_survival.reset_index(drop=True)
print ("------------------------")
print (titanic_reindexed.loc[0:10])

    PassengerId  Survived  Pclass                                  Name  \
630          631         1       1  Barkworth, Mr. Algernon Henry Wilson   
851          852         0       3                   Svensson, Mr. Johan   
493          494         0       1               Artagaveytia, Mr. Ramon   
96            97         0       1             Goldschmidt, Mr. George B   
116          117         0       3                  Connors, Mr. Patrick   
672          673         0       2           Mitchell, Mr. Henry Michael   
745          746         0       1          Crosby, Capt. Edward Gifford   
33            34         0       2                 Wheadon, Mr. Edward H   
54            55         0       1        Ostby, Mr. Engelhart Cornelius   
280          281         0       3                      Duane, Mr. Frank   

      Sex   Age  SibSp  Parch      Ticket     Fare Cabin Embarked  
630  male  80.0      0      0       27042  30.0000   A23        S  
851  male  74.0      0      0      347060   7.7750   NaN        S  
493  male  71.0      0      0    PC 17609  49.5042   NaN        C  
96   male  71.0      0      0    PC 17754  34.6542    A5        C  
116  male  70.5      0      0      370369   7.7500   NaN        Q  
672  male  70.0      0      0  C.A. 24580  10.5000   NaN        S  
745  male  70.0      1      1   WE/P 5735  71.0000   B22        S  
33   male  66.0      0      0  C.A. 24579  10.5000   NaN        S  
54   male  65.0      0      1      113509  61.9792   B30        C  
280  male  65.0      0      0      336439   7.7500   NaN        Q  
------------------------
    PassengerId  Survived  Pclass                                  Name   Sex  \
0           631         1       1  Barkworth, Mr. Algernon Henry Wilson  male   
1           852         0       3                   Svensson, Mr. Johan  male   
2           494         0       1               Artagaveytia, Mr. Ramon  male   
3            97         0       1             Goldschmidt, Mr. George B  male   
4           117         0       3                  Connors, Mr. Patrick  male   
5           673         0       2           Mitchell, Mr. Henry Michael  male   
6           746         0       1          Crosby, Capt. Edward Gifford  male   
7            34         0       2                 Wheadon, Mr. Edward H  male   
8            55         0       1        Ostby, Mr. Engelhart Cornelius  male   
9           281         0       3                      Duane, Mr. Frank  male   
10          457         0       1             Millet, Mr. Francis Davis  male   

     Age  SibSp  Parch      Ticket     Fare Cabin Embarked  
0   80.0      0      0       27042  30.0000   A23        S  
1   74.0      0      0      347060   7.7750   NaN        S  
2   71.0      0      0    PC 17609  49.5042   NaN        C  
3   71.0      0      0    PC 17754  34.6542    A5        C  
4   70.5      0      0      370369   7.7500   NaN        Q  
5   70.0      0      0  C.A. 24580  10.5000   NaN        S  
6   70.0      1      1   WE/P 5735  71.0000   B22        S  
7   66.0      0      0  C.A. 24579  10.5000   NaN        S  
8   65.0      0      1      113509  61.9792   B30        C  
9   65.0      0      0      336439   7.7500   NaN        Q  
10  65.0      0      0       13509  26.5500   E38        S  
3.11 apply函数
# apply调用函数
def hundredth_row(column):
    hundredth_item = column.loc[99]
    return hundredth_item

hundredth_row = titanic_survival.apply(hundredth_row)
print (hundredth_row)

PassengerId                  100
Survived                       0
Pclass                         2
Name           Kantor, Mr. Sinai
Sex                         male
Age                           34
SibSp                          1
Parch                          0
Ticket                    244367
Fare                          26
Cabin                        NaN
Embarked                       S
dtype: object
#3.12 通过函数的方式,查看第100号元素
def hundredth_row(column):
    hundredth_item = column.loc[99]
    return hundredth_item

hundredth_row = titanic_survival.apply(hundredth_row)
print (hundredth_row)

PassengerId                  100
Survived                       0
Pclass                         2
Name           Kantor, Mr. Sinai
Sex                         male
Age                           34
SibSp                          1
Parch                          0
Ticket                    244367
Fare                          26
Cabin                        NaN
Embarked                       S
dtype: object
#3.13 返回每行有缺失值的个数
def not_null_count(column):
    column_null = pd.isnull(column)
    null = column[column_null]
    return len(null)

column_null_count = titanic_survival.apply(not_null_count)
print (column_null_count)

PassengerId      0
Survived         0
Pclass           0
Name             0
Sex              0
Age            177
SibSp            0
Parch            0
Ticket           0
Fare             0
Cabin          687
Embarked         2
dtype: int64
#3.14 根据pclass不同值,变换成英文
def which_class(row):
    pclass = row["Pclass"]
    if pd.isnull(pclass):
        return "Unknow"
    elif pclass == 1:
        return "First Class"
    elif pclass == 2:
        return "Second Class"
    elif pclass == 3:
        return "Third Class"
    
classes = titanic_survival.apply(which_class, axis=1)
print (classes)

0       Third Class
1       First Class
2       Third Class
3       First Class
4       Third Class
5       Third Class
6       First Class
7       Third Class
8       Third Class
9      Second Class
10      Third Class
11      First Class
 ...     
887     First Class
888     Third Class
889     First Class
890     Third Class
Length: 891, dtype: object
#3.15 根据年龄不同,返回不同值
def is_minor(row):
    if row["Age"]<18:
        return True
    else:
        return False
minors = titanic_survival.apply(is_minor,axis=1)
print(minors)

def generate_age_label(row):
    age = row["Age"]
    if pd.isnull(age):
        return "unknow"
    elif age<18:
        return "minor"
    else:
        return "adult"
age_labels = titanic_survival.apply(generate_age_label,axis=1)
print(age_labels)

0       adult
1       adult
2       adult
3       adult
4       adult
5      unknow
6       adult
7       minor
8       adult
9       minor
10      minor
        ...  
885     adult
886     adult
887     adult
888    unknow
889     adult
890     adult
#3.16 年龄与生存率之间关系
titanic_survival['age_labels'] = age_labels
age_group_survival = titanic_survival.pivot_table(index="age_labels",values="Survived")
print(age_group_survival)

age_labels        Survived  
adult       			0.381032
minor       		0.539823
unknow      		0.293785

4.Series结构
DataFrame结构是由一系列Series结构组成
Series结构是由ndarray结构组成

#4.1 读取文件,打印
import pandas as pd
fandango = pd.read_csv("fandango_score_comparison.csv")
series_film = fandango["FILM"]
print (type(series_film))
print (series_film[0:5])
series_rt = fandango["RottenTomatoes"]
print (series_rt[0:5])

<class 'pandas.core.series.Series'>
0    Avengers: Age of Ultron (2015)
1                 Cinderella (2015)
2                    Ant-Man (2015)
3            Do You Believe? (2015)
4     Hot Tub Time Machine 2 (2015)
Name: FILM, dtype: object
0    74
1    85
2    80
3    18
4    14
Name: RottenTomatoes, dtype: int64
#4.2 获取元素
from pandas import Series
film_names = series_film.values
print(type(film_names))
print(film_names)
rt_scores = series_rt.values
print(rt_scores)
series_custom = Series(rt_scores , index=film_names)
print(series_custom[["Minions (2015)","Leviathan (2014)"]])

<class 'numpy.ndarray'>
['Avengers: Age of Ultron (2015)' 'Cinderella (2015)' 'Ant-Man (2015)'
 'Do You Believe? (2015)' 'Hot Tub Time Machine 2 (2015)'
 'The Water Diviner (2015)' 'Irrational Man (2015)' 'Top Five (2014)'
 'Shaun the Sheep Movie (2015)' 'Love & Mercy (2015)'
 'Far From The Madding Crowd (2015)' 'Black Sea (2015)' 'Leviathan (2014)'
 'Unbroken (2014)' 'The Imitation Game (2014)' 'Taken 3 (2015)'
 'Ted 2 (2015)' 'Southpaw (2015)'
 'Night at the Museum: Secret of the Tomb (2014)' 'Pixels (2015)'
 'McFarland, USA (2015)' 'Insidious: Chapter 3 (2015)'
 'The Man From U.N.C.L.E. (2015)' 'Run All Night (2015)'
 'Trainwreck (2015)' 'Selma (2014)' 'Ex Machina (2015)'
 'Still Alice (2015)' 'Wild Tales (2014)' 'The End of the Tour (2015)'
 'Red Army (2015)' 'When Marnie Was There (2015)'
 'The Hunting Ground (2015)' 'The Boy Next Door (2015)' 'Aloha (2015)'
 'The Loft (2015)' '5 Flights Up (2015)' 'Welcome to Me (2015)'
 'Saint Laurent (2015)' 'Maps to the Stars (2015)'
 "I'll See You In My Dreams (2015)" 'Timbuktu (2015)' 'About Elly (2015)'
 'The Diary of a Teenage Girl (2015)'
 'Kingsman: The Secret Service (2015)' 'Tomorrowland (2015)'
 'The Divergent Series: Insurgent (2015)' 'Annie (2014)'
 'Fantastic Four (2015)' 'Terminator Genisys (2015)'
 'Pitch Perfect 2 (2015)' 'Entourage (2015)' 'The Age of Adaline (2015)'
 'Hot Pursuit (2015)' 'The DUFF (2015)' 'Black or White (2015)'
 'Project Almanac (2015)' 'Ricki and the Flash (2015)'
 'Seventh Son (2015)' 'Mortdecai (2015)' 'Unfinished Business (2015)'
 'American Ultra (2015)' 'True Story (2015)' 'Child 44 (2015)'
 'Dark Places (2015)' 'Birdman (2014)' 'The Gift (2015)'
 'Unfriended (2015)' 'Monkey Kingdom (2015)' 'Mr. Turner (2014)'
 'Seymour: An Introduction (2015)' 'The Wrecking Crew (2015)'
 'American Sniper (2015)' 'Furious 7 (2015)'
 'The Hobbit: The Battle of the Five Armies (2014)' 'San Andreas (2015)'
 'Straight Outta Compton (2015)' 'Vacation (2015)' 'Chappie (2015)'
 'Poltergeist (2015)' 'Paper Towns (2015)' 'Big Eyes (2014)'
 'Blackhat (2015)' 'Self/less (2015)' 'Sinister 2 (2015)'
 'Little Boy (2015)' 'Me and Earl and The Dying Girl (2015)'
 'Maggie (2015)' 'Mad Max: Fury Road (2015)' 'Spy (2015)'
 'The SpongeBob Movie: Sponge Out of Water (2015)' 'Paddington (2015)'
 'Dope (2015)' 'What We Do in the Shadows (2015)' 'The Overnight (2015)'
 'The Salt of the Earth (2015)' 'Song of the Sea (2014)'
 'Fifty Shades of Grey (2015)' 'Get Hard (2015)' 'Focus (2015)'
 'Jupiter Ascending (2015)' 'The Gallows (2015)'
 'The Second Best Exotic Marigold Hotel (2015)' 'Strange Magic (2015)'
 'The Gunman (2015)' 'Hitman: Agent 47 (2015)' 'Cake (2015)'
 'The Vatican Tapes (2015)' 'A Little Chaos (2015)'
 'The 100-Year-Old Man Who Climbed Out the Window and Disappeared (2015)'
 'Escobar: Paradise Lost (2015)' 'Into the Woods (2014)'
 'It Follows (2015)' 'Inherent Vice (2014)' 'A Most Violent Year (2014)'
 "While We're Young (2015)" 'Clouds of Sils Maria (2015)'
 'Testament of Youth (2015)' 'Infinitely Polar Bear (2015)'
 'Phoenix (2015)' 'The Wolfpack (2015)'
 'The Stanford Prison Experiment (2015)' 'Tangerine (2015)'
 'Magic Mike XXL (2015)' 'Home (2015)' 'The Wedding Ringer (2015)'
 'Woman in Gold (2015)' 'The Last Five Years (2015)'
 'Mission: Impossible – Rogue Nation (2015)' 'Amy (2015)'
 'Jurassic World (2015)' 'Minions (2015)' 'Max (2015)'
 'Paul Blart: Mall Cop 2 (2015)' 'The Longest Ride (2015)'
 'The Lazarus Effect (2015)' 'The Woman In Black 2 Angel of Death (2015)'
 'Danny Collins (2015)' 'Spare Parts (2015)' 'Serena (2015)'
 'Inside Out (2015)' 'Mr. Holmes (2015)' "'71 (2015)"
 'Two Days, One Night (2014)' 'Gett: The Trial of Viviane Amsalem (2015)'
 'Kumiko, The Treasure Hunter (2015)']
[ 74  85  80  18  14  63  42  86  99  89  84  82  99  51  90   9  46  59
  50  17  79  59  68  60  85  99  92  88  96  92  96  89  92  10  19  11
  52  71  51  60  94  99  97  95  75  50  30  27   9  26  67  32  54   8
  71  39  34  64  12  12  11  46  45  26  26  92  93  60  94  98 100  93
  72  81  61  50  90  27  30  31  55  72  34  20  13  20  81  54  97  93
  78  98  87  96  82  96  99  25  29  57  26  16  62  17  17   7  49  13
  40  67  52  71  96  73  90  83  89  81  80  99  84  84  95  62  45  27
  52  60  92  97  71  54  35   5  31  14  22  77  52  18  98  87  97  97
 100  87]
Minions (2015)      54
Leviathan (2014)    99
dtype: int64
#4.3 重新排序
original_index = series_custom.index.tolist()
sorted_index = sorted(original_index)
sorted_by_index = series_custom.reindex(sorted_index)
print (sorted_by_index)

'71 (2015)                                         97
5 Flights Up (2015)                                52
A Little Chaos (2015)                              40
A Most Violent Year (2014)                         90
About Elly (2015)                                  97
Aloha (2015)                                       19
American Sniper (2015)                             72
American Ultra (2015)                              46
                                                   ..
                                                   
Two Days, One Night (2014)                         97
Unbroken (2014)                                    51
Unfinished Business (2015)                         11
Unfriended (2015)                                  60
Vacation (2015)                                    27
Welcome to Me (2015)                               71
What We Do in the Shadows (2015)                   96
When Marnie Was There (2015)                       89
While We're Young (2015)                           83
Wild Tales (2014)                                  96
Woman in Gold (2015)                               52
Length: 146, dtype: int64
#4.4 series重新排序
sc2 = series_custom.sort_index()
sc3 = series_custom.sort_values()
print (sc3[0:10])

Paul Blart: Mall Cop 2 (2015)     5
Hitman: Agent 47 (2015)           7
Hot Pursuit (2015)                8
Fantastic Four (2015)             9
Taken 3 (2015)                    9
The Boy Next Door (2015)         10
The Loft (2015)                  11
Unfinished Business (2015)       11
Mortdecai (2015)                 12
Seventh Son (2015)               12
dtype: int64
#4.5 series重新排序后,相加
print(np.add(series_custom,series_custom))
print("-----------------sin-----------------------")
np.sin(series_custom)
print("------------------max----------------------")
np.max(series_custom)

#4.6 series查找
print (series_custom)
series_custom > 50
#print (series_custom)
series_greater_than_50 = series_custom[series_custom>50]
print (series_greater_than_50)
#4.7 series的values相加,再取平均数
rt_critics = Series(fandango["RottenTomatoes"].values,index=fandango["FILM"])
rt_users = Series(fandango["RottenTomatoes_User"].values,index=fandango["FILM"])
rt_mean = (rt_critics + rt_users)/2
print (rt_mean)

FILM
Avengers: Age of Ultron (2015)                    80.0
Cinderella (2015)                                 82.5
Ant-Man (2015)                                    85.0
Do You Believe? (2015)                            51.0
Hot Tub Time Machine 2 (2015)                     21.0
                                                  ... 
Inside Out (2015)                                 94.0
Mr. Holmes (2015)                                 82.5
'71 (2015)                                        89.5
Two Days, One Night (2014)                        87.5
Gett: The Trial of Viviane Amsalem (2015)         90.5
Kumiko, The Treasure Hunter (2015)                75.0
Length: 146, dtype: float64
#4.8 DataFrame的索引
print(type(fandango))
fandango_films = fandango.set_index("FILM",drop=False)
print(fandango_films.index)
#4.9 DataFrame的切片
print(fandango_films["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"])
print("-------------------------")
print(fandango_films.loc["Avengers: Age of Ultron (2015)":"Hot Tub Time Machine 2 (2015)"])

总结:
1.读数据:pandas.read_csv(“food_info.csv”)
2.打印数据:print (food_info[“Iron_(mg)”])
3.获取索引为0的元素:print(food_info.loc[0])
4.根据列名获取列:print(food_info[“NDB_No”]) print(food_info[[“NDB_No”,“Water_(g)”]])
5.获取以克结尾的列:c.endswith("(g)")
6.排序:food_info.sort_values(“Sodium_(mg)”,inplace = True)
7.统计缺失值: pd.isnull(age)
8.算平均数:titanic_survival[“Age”].mean()
9.船仓的获救率:titanic_survival.pivot_table(index=“Pclass”,values=“Survived”,aggfunc=np.mean)
10.把年龄和性别为空的去掉:titanic_survival.dropna(axis=0,subset=[“Age”,“Sex”])
11.查看83号样本的年纪和766号的船仓:titanic_survival.loc[83,“Age”] titanic_survival.loc[766,“Pclass”]
12.重新编辑索引:new_titanic_survival.reset_index(drop=True)
13.apply调用函数:titanic_survival.apply(hundredth_row)
14.DataFrame结构是由一系列Series结构组成。
Series结构是由ndarray结构组成
15.series重新排序:series_custom.sort_index() series_custom.sort_values()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值