
大数据
文章平均质量分 86
熬夜的王
一个勇往直前的程序员!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【大数据】探索怎么从一段话中解析关键信息(寄件人相关信息)
通过使用Spacy的NLP功能,我们成功实现了从文本中提取姓名、地址和电话号码的功能。需要注意的是,这个简单的示例可能在处理复杂文本时效果不佳,实际应用中可能需要进一步的优化和训练。此外,对于电话号码的识别,我们简单地使用了数字长度作为判断依据,这并不准确。在实际应用中,我们可以使用正则表达式来更准确地识别电话号码。希望这个博客能够帮助你了解如何使用NLP技术实现文本信息解析功能。如果有任何疑问,欢迎在评论区留言讨论!原创 2024-09-12 23:17:29 · 1072 阅读 · 0 评论 -
【大数据】如何读取多个Excel文件并计算列数据的最大求和值
在数据分析和处理中,我们经常需要从多个Excel文件中提取数据并进行计算。本文将带您通过一个实用的Python教程,学习如何读取D盘目录下特定文件夹内的多个Excel文件,并计算特定列数据的最大求和值。原创 2024-09-09 22:40:29 · 1414 阅读 · 0 评论 -
【大数据】DataX深度解析:数据同步的神器是如何工作的?
DataX作为一款开源的数据同步工具,其价值在于帮助用户高效、稳定地完成数据迁移和同步任务,降低了数据处理的复杂性和成本。展望未来,我们期待DataX能够持续创新,为用户提供更加丰富和强大的功能,成为数据同步领域的标杆工具。同时,也希望DataX社区能够更加繁荣,吸引更多开发者和企业参与到项目的贡献中来。原创 2024-09-05 23:08:02 · 1528 阅读 · 0 评论 -
【大数据】Kafka管理神器Offset Explorer:一键转换消息格式,重置消费点位不再难
Offset Explorer(原名Kafka Tool)是一款用于管理和使用Apache Kafka集群的图形用户界面(GUI)应用程序。它为用户提供了直观的UI界面,方便快速查看Kafka集群中的对象以及集群主题中存储的消息。原创 2024-09-04 23:30:05 · 2524 阅读 · 0 评论 -
【大数据】Canal实现MySQL数据增量同步至Kafka:原理与配置解析
Canal是一款开源的数据库增量日志解析组件,主要用于监控数据库数据变更,并将变更数据同步到其他存储介质。Canal通过模拟MySQL Slave的交互协议,实时获取数据库的增量更新,从而实现数据同步。本文将介绍如何使用Canal将MySQL的数据通过监听Binlog,增量发送到Kafka。Binlog(Binary Log)是MySQL数据库的二进制日志,记录了所有对数据库数据的修改操作。开启Binlog后,MySQL会实时将数据变更记录到Binlog文件中。原创 2024-09-04 20:48:11 · 2036 阅读 · 0 评论 -
【大数据】Kafka与RocketMQ:消息队列界的“绝代双骄”
在消息队列的江湖中,Kafka和RocketMQ无疑是两颗最璀璨的明星。它们各自拥有一大批忠实粉丝,为大数据世界的通信立下了汗马功劳。今天,就让我们来扒一扒这两位“绝代双骄”的故事。原创 2024-09-03 23:14:30 · 1218 阅读 · 0 评论 -
【大数据】kafka与Zookeeper不得不说的关系!
在数据流转的江湖中,Kafka和ZooKeeper这对“CP”一直是大家津津乐道的话题。一个负责消息的快速传递,一个负责集群的协调管理,它们共同守护着数据世界的和平与繁荣。今天,就让我们透过源码的面纱,看看这对“黄金搭档”是如何合作无间的。原创 2024-09-03 22:50:29 · 635 阅读 · 0 评论 -
【Kafka】怎么解决Kafka消费者消费堆积问题?
本文针对Kafka消费堆积问题,分析了原因,并提供了重制消费点位、增加消费者数量、优化消费能力等解决方案。以Java为例,给出了相应的代码示例。在实际应用中,应根据具体情况选择合适的解决方案,并注意监控和调整,以确保Kafka系统的稳定性和性能。原创 2024-09-02 23:30:09 · 3227 阅读 · 1 评论 -
【大数据】浅谈Pyecharts:数据可视化的强大工具
Pyecharts是一款基于Python的数据可视化库,以其丰富的图表类型、高度可定制的图表样式以及便捷的交互功能,成为了众多数据分析师和数据科学家的首选工具。从1.0版本到7.0版本,Pyecharts经历了多次迭代和升级,不断优化性能、提高图表渲染速度,并新增多种图表类型,以满足用户在不同场景下的可视化需求。如何使用Pyecharts主要包括安装Pyecharts、创建图表实例、添加数据、设置图表样式和渲染图表等步骤。原创 2024-08-31 23:38:26 · 1659 阅读 · 0 评论 -
【大数据】浅谈java程序开发怎么转型为大数据开发
对于拥有超过5年Java开发经验的程序员来说,转型大数据开发是一个具有挑战性的过程,但也是一个充满机遇和成长的空间。通过不断学习新技术、掌握新知识,并结合实际项目经验,您将能够顺利地从Java程序员转型为大数据开发工程师。在这个过程中,您将不断提升自己的技术能力和职业竞争力,为未来的职业发展打下坚实的基础。在转型过程中,您可能会遇到各种挑战,比如学习新技能的困难、适应新工作环境的压力等。但请相信,每一次挑战都是成长的机会。在这个过程中,您需要保持积极的心态,勇于面对困难,坚持不懈地努力。原创 2024-08-31 23:32:03 · 1827 阅读 · 0 评论 -
【大数据】Kaggle:数据科学家的竞技场与学习平台
Kaggle作为一个数据科学和机器学习的平台,为用户提供了丰富的资源和学习机会。无论是初学者还是专业人士,都可以在Kaggle上找到适合自己的项目、竞赛和社区。通过本文的介绍,我们希望读者能够对Kaggle有一个全面的认识,并能够充分利用这个平台来提升自己的数据科学技能。原创 2024-08-30 22:44:58 · 5082 阅读 · 0 评论 -
【大数据】Java与Python的无缝对接:探讨Java调用Python的方法与原理
本文详细介绍了Java调用Python的原理与三种实现方法,并通过具体示例展示了每种方法的应用。通过JNI、Jython和进程间通信这三种技术手段,Java和Python可以有效地整合在一起,发挥各自的优势,为开发者提供更加灵活和强大的编程解决方案。Java调用Python的方法多种多样,每种方法都有其适用的场景和局限性。开发者应根据项目需求、性能要求和安全性考虑来选择合适的调用方式。原创 2024-08-30 22:37:49 · 8827 阅读 · 0 评论