DeepSeek HuggingFace 70B Llama 版本 (DeepSeek-R1-Distill-Llama-70B)

简简单单 Online zuozuo :本心、输入输出、结果

DeepSeek HuggingFace 70B Llama 版本 (DeepSeek-R1-Distill-Llama-70B)


编辑 | 简简单单 Online zuozuo
地址 | https://blog.csdn.net/qq_15071263


如果觉得本文对你有帮助,欢迎点赞、收藏、评论,谢谢

前言

  1. DeepSeek-R1-Zero 是一种通过大规模强化学习 (RL) 训练的模型,没有监督微调 (SFT) 作为初步步骤,在推理方面表现出了卓越的性能。
  2. 随着 RL 的出现,DeepSeek-R1-Zero 自然而然地出现了许多强大而有趣的推理行为。 但是,DeepSeek-R1-Zero 遇到了无休止的重复、可读性差和语言混合等挑战。
  3. 为了解决这些问题并进一步提高推理性能, DeepSe
### 如何从 Hugging Face 下载 DeepSeek R1 7B 模型 为了成功下载 DeepSeek R1 7B 模型,可以采用以下方法: #### 方法一:通过 `snapshot_download` 函数 可以直接使用 Hugging Face 提供的官方 API 工具 `huggingface_hub` 中的 `snapshot_download` 函数完成模型下载。以下是具体代码示例[^2]: ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="deepseek-ai/DeepSeek-R1-7B-base", local_dir="./DeepSeek-R1", resume_download=True) ``` 上述代码中的参数解释如下: - `repo_id`: 表示目标模型所在的存储库 ID,在这里是 `"deepseek-ai/DeepSeek-R1-7B-base"`。 - `local_dir`: 设置本地保存路径,默认为当前目录下的 `./DeepSeek-R1` 文件夹。 - `resume_download`: 如果中途断开连接,启用此选项可继续未完成的下载。 #### 方法二:借助国内镜像站点加速下载 如果遇到网络不稳定的情况,可以通过配置代理或者切换到国内可用的镜像站点来提升下载速度。例如阿里云 ModelScope 或腾讯 TiAMO 平台可能提供类似的大型预训练模型托管服务。不过需要注意的是,这些平台未必直接支持所有的 Hugging Face 存储库同步更新,因此建议先确认所需版本是否已上线后再操作。 另外一种替代方案就是利用第三方工具如 Axel 多线程 HTTP/FTP 下载器手动获取分片文件并重新组合成完整的权重档案;但这种方法较为复杂且容易出错,除非必要时不推荐使用这种方式。 对于希望进一步探索该系列其他变体(比如更大规模参数量版本)以及后续微调工作的开发者来说,则需参照相关教程准备好适配的数据集结构,并按照指导逐步实施包括但不限于加载基础架构、应用量化技术减少内存占用等环节的工作流程[^5]。 最后提醒一点,当执行某些特定框架命令(ollama)时可能会隐藏部分底层细节从而难以直观判断确切源地址信息。此时可通过增加调试标志(--verbose),审查程序内部行为轨迹找出真正发起请求的目标位置[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单OnlineZuozuo

感谢哥哥姐姐的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值