
深度学习
猪逻辑公园
数据分析 机器学习 NLP 风控 营销推荐
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
阿里之完整空间多任务模型ESMM介绍
论文地址:https://arxiv.org/abs/1804.07931在正式开篇之前,我们先介绍一下几个名词:impression:用户观察到曝光的产品click:用户对impression的点击行为conversion:用户点击之后对物品的购买行为CTR:从impression到click的比例CVR:从click到conversion的比例CTCVR:从impression到conve...转载 2019-10-21 17:54:32 · 1330 阅读 · 0 评论 -
神经网络概述
什么是神经网络 人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN)或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。 神经网络主要由:输入层,隐藏层,输出层构成。当隐藏层只有一层时,该网络为三层神经网络,当没有隐藏层时,网络为两层的...原创 2018-06-15 23:04:59 · 766 阅读 · 0 评论 -
径向基RBF神经网络
1985年,Powell提出了多变量插值的径向基函数(RBF)方法。1988年Moody和Darken提出了一种神经网络结构,即RBF神经网络,属于前向神经网络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。RBF网络的结构与多层前向网络类似,它是一种三层前向网络。输入层由信号源结点组成,第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数是RBF,它是...转载 2018-06-16 11:38:33 · 2030 阅读 · 0 评论 -
CNN-LeNet
LeNet-5模型LeNet-5模型是Yann LeCun教授于1998年在论文Gradient-based learning applied to document recognition中提出的,它是第一个成功应用于数字识别问题的卷积神经网络。LeNet-5模型一共有7层,下图展示了LeNet-5模型的架构: 第一层,卷积层这一层的输入就是原始的图像像素32*32*1。第一个卷积层过滤器尺寸为...转载 2018-06-25 14:43:05 · 393 阅读 · 0 评论 -
Word2vec 之 Skip-Gram模型
什么是Word2Vec和Embeddings?Word2Vec是从大量文本语料中以无监督的方式学习语义知识的一种模型,它被大量地用在自然语言处理(NLP)中。那么它是如何帮助我们做自然语言处理呢?Word2Vec其实就是通过学习文本来用词向量的方式表征词的语义信息,即通过一个嵌入空间使得语义上相似的单词在该空间内距离很近。Embedding其实就是一个映射,将单词从原先所属的空间映射到新的多维...转载 2018-07-18 22:00:37 · 1827 阅读 · 0 评论 -
孪生神经网络Contrastive Loss (对比损失)
Contrastive Loss (对比损失)在caffe的孪生神经网络(siamese network)中,其采用的损失函数是contrastive loss,这种损失函数可以有效的处理孪生神经网络中的paired data的关系。contrastive loss的表达式如下: 其中d=||an−bn||2,代表两个样本特征的欧氏距离,y为两个样本是否匹配的标签,y=1代表两个样本相...转载 2018-08-25 11:13:04 · 17930 阅读 · 2 评论 -
DeepFM原理及源码解析
1、DeepFM原理回顾先来回顾一下DeepFM的模型结构:DeepFM包含两部分:因子分解机部分与神经网络部分,分别负责低阶特征的提取和高阶特征的提取。这两部分共享同样的嵌入层输入。DeepFM的预测结果可以写为:嵌入层嵌入层(embedding layer)的结构如上图所示。通过嵌入层,尽管不同field的长度不同(不同离散变量的取值个数可能不同),但是embedd...转载 2019-06-29 20:06:42 · 5254 阅读 · 7 评论 -
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史
转载自- 张俊林的文章 - 知乎 https://zhuanlan.zhihu.com/p/49271699Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得。那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大。但是架不住效果太好了,基本刷新了很多NLP的任务的最好性能,有些任...转载 2019-07-14 21:42:11 · 322 阅读 · 0 评论