搬水果 哈弗曼树 优先级队列

本文介绍了一种使用哈弗曼树解决体力消耗最小化问题的方法。通过将水果堆合并的问题抽象为哈弗曼树的构建过程,实现了体力消耗的最小化。文章详细解释了算法流程,包括如何利用优先级队列实现哈弗曼树的构建,以及如何计算总消耗的体力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<bits/stdc++.h>
using namespace std;

/*
在一个果园里,小明已经将所有的水果打了下来,并按水果的不同种类分成了若干堆,
小明决定把所有的水果合成一堆。每一次合并,小明可以把两堆水果合并到一起,消耗的体力等于两堆水果的重量之和。
当然经过 n‐1 次合并之后,就变成一堆了。小明在合并水果时总共消耗的体力等于每次合并所耗体力之和。
假定每个水果重量都为 1,并且已知水果的种类数和每种水果的数目,你的任务是设计出合并的次序方案,
使小明耗费的体力最少,并输出这个最小的体力耗费值。例如有 3 种水果,数目依次为 1,2,9。
可以先将 1,2 堆合并,新堆数目为3,耗费体力为 3。然后将新堆与原先的第三堆合并得到新的堆,
耗费体力为 12。所以小明总共耗费体力=3+12=15,可以证明 15 为最小的体力耗费值。
*/

int main()
{//哈弗曼树
    int n,w;
    while(cin>>n)
    {
        if(n==0){break;}
        priority_queue<int,vector<int>,greater<int>>q;//用优先级队列来做哈弗曼树
        for(int i=0;i<n;i++)
        { 
            cin>>w;
        q.push(w);
        }
        int ans=0;
       while(q.size()>1)
       {
           int tmp1=q.top();
           q.pop();
           int tmp2=q.top();
           q.pop();
           q.push(tmp1+tmp2);//把最小的两个再放入哈弗曼树
           ans+=tmp1;ans+=tmp2;//搬了最小的两个耗费的力气
       }
        cout<<ans<<endl;
    }
    
    
    
    
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值