R-FCN 简介

R-FCN是为了解决目标识别中的位置不敏感性和位置敏感性矛盾问题,它引入了Position-Sensitive Score Map和Position-Sensitive RoI Pooling。在ResNet的feature map上,通过K*K*(C+1)维的Score Map进行分类,4*K*K维的Score Map用于回归,从而实现目标检测。相比Faster R-CNN,R-FCN在保持相似精度的同时,提高了运行速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一背景

在目标识别领域,长久以来存在两个矛盾:
分类网络的位置不敏感性:对于分类任务而言,我们希望随着某个目标在图片中不断的移动,我的网络仍然可以准确的将你区分为对应的类别。
实验表明,深的全卷积网络能够具备这个特性,如ResNet-101等。
检测网络的位置敏感性:对于检测任务而言,我们希望可以准确的输出目标所在的位置值。也就是随着某个目标的移动,我的网络希望能够和它一起移动,仍然能够准确的检测到它,即目标位置的移动很敏感。需要计算对应的偏差值,需要计算我的预测和GT的重合率等。但是,深的全卷积网路不具备这样的一个特征。

分类网络的位置不敏感性和检测网络的位置敏感性的一个矛盾问题,R-FCN提出了Position-sensitive score maps。

二 算法步骤

这里写图片描述
如图所示,我们先来分析一下R-FCN算法的整个运行步骤,使得我们对整个算法有一个宏观的理解,接下来再对不同的细节进行详细的分析。

  1. 首先,我们选择一张需要处理的图片,并对这张图片进行相应的预处理操作;
  2. 接着,我们将预处理后的图片送入一个预训练好的分类网络中(这里使用了ResNet-101网络的Conv4之前的网络),固定其对应的网络参数;
  3. 接着,在预训练网络的最后一个卷积层获得的feature map上存在3个分支,第1个分支就是在该feature map上面进行RPN操作,获得相应的ROI;第2个分支就是在该feature map上获得一个K*K*(C+1)维的位置敏感得分映射(position-sensitive score map),用来进行分类;第3个分支就是在该feature map上获得一个4*K*K维的位置敏感得分映射,用来进行回归;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值