洛谷【数学 1】基础数学问题:异或运算的巧妙应用

1. 引言

在编程与数学的交叉领域,位运算因其高效性和简洁性占据重要地位。从数据加密、校验到算法实现,位运算都能展现其独特价值。其中,"在一堆重复出现偶数次的元素中,找出唯一出现奇数次的元素"这一问题,完美体现了位运算的精妙应用。

洛谷 P1469 找筷子正是这样一道展示位运算魅力的题目:给定一堆长度相同的筷子,其中混入了一根单独出现的筷子(出现奇数次),要求找出这根筷子的长度。从问题理解到位运算解决,整个过程展现了数学思维与编程技巧的完美结合。本文将详细解析其代码实现、数学原理、优化方法及实际应用。

2. 代码解析

题目参考代码如下:

#include<bits/stdc++.h>
using namespace std;
int n,x,ans=0;

int main(){
    scanf("%d",&n);
    for(int i=0;i<n;i++){
        scanf("%d",&x);
        ans^=x;
    }
    printf("%d\n",ans);
    return 0;
}

这段代码简洁到让人惊讶 —— 仅有几行却能解决问题。我们逐行解析其逻辑:

        首先通过 #include<bits/stdc++.h> 引入标准库, using namespace std; 简化命名空间            使用,这是 C++ 编程中的常见开头。


        定义三个变量:n存储筷子总数, 临时存储输入长度, ans 存储结果(初始为0)。


   main 函数中,先读取筷子总数 n 。
 

        通过循环读取每根筷子长度 ,并执行 ans^=x 操作。
 

        最终输出 ans ,即单独筷子的长度。

初看可能疑惑:为何简单的异或操作就能找出奇数次出现的长度?这正是我们需要通过数学原理来解释的核心问题。

3. 数学原理

问题本质:在一组筷子长度中,除一个长度出现奇数次外,其余均出现偶数次,要求找出这个长度。

常规思路的局限

传统方法是统计每个长度出现次数,然后找出奇数次长度。这种方法:

  • 时间复杂度:O(n)

  • 空间复杂度:O(n)(最坏情况需存储n个长度的次数) 当n较大时,会占用较多内存,效率较低。

位运算解决方案详解

异或运算的特性与应用

异或运算(^)在计算机科学中有几个重要特性可以巧妙解决本题:

        交换律:a ^ b = b ^ a
        这意味着运算的顺序不影响结果,例如 5 ^ 3 和 3 ^ 5 结果相同

        结合律:(a ^ b) ^ c = a ^ (b ^ c)
        允许我们以任意顺序组合运算而不改变最终结果

        自反性:a ^ a = 0
        任何数与自身异或结果为0,这是消去重复数的关键

        恒等性:a ^ 0 = a
        任何数与0异或保持原值不变

问题解决原理

对于检测出现奇数次的长度问题:

        出现偶数次的长度会相互抵消(a ^ a = 0)

        出现奇数次的长度会保留(0 ^ b = b)

这个特性非常类似于数学中的正负抵消原理,但通过位运算实现更为高效。

详细示例解析

以长度序列 [2, 3, 2, 3, 4] 为例:

初始 ans = 0

步骤1:0 ^ 2 = 2
   二进制:00 ^ 10 = 10 (2)

步骤2:2 ^ 3 = 1
   二进制:10 ^ 11 = 01 (1)

步骤3:1 ^ 2 = 3
   二进制:01 ^ 10 = 11 (3)

步骤4:3 ^ 3 = 0
   二进制:11 ^ 11 = 00 (0)

步骤5:0 ^ 4 = 4
   二进制:00 ^ 100 = 100 (4)

最终结果4就是序列中唯一出现奇数次的长度。

4. 代码优化

给出的代码时间复杂度为 O (n),其中 n 是筷子的总数。在这个问题中,我们必须遍历所有的筷子长度才能确定那根出现奇数次的筷子,因为任何一根筷子都有可能是目标,所以无法减少遍历的次数,O (n) 的时间复杂度已经是最优的了。

从空间复杂度来看,代码只使用了有限的几个变量(n、x、ans),空间复杂度为 O (1),不需要额外的存储空间来存储每个长度的出现次数,相比传统的统计次数方法,在空间利用上有很大的优势,已经非常高效,不存在进一步优化的空间。

5. 实际应用

异或运算的典型应用场景:

        数据加密:简单加密/解密

        数据校验:传输错误检测

        变量交换:不使用临时变量交换两个变量

        查找唯一元素:类似本题的场景

6. 扩展阅读

推荐资源:

        《C++ Primer》位运算章节

        洛谷位运算专题练习

        异或运算的其他性质(如a ^ b ^ b = a)

7. 练习题目

巩固练习:

  1. 洛谷 P1469(原题)

  2. 洛谷 P1865

8. 总结

本文通过解析洛谷 P1469 得出以下结论:

         位运算的高效性:异或运算完美解决奇数次查找问题

         思维转换的重要性:从传统统计到位运算的巧妙转变

         数学基础的关键作用:异或性质是解题核心

建议通过实际例子练习异或运算,加深理解,以便灵活运用于类似问题。

附录

洛谷P1469原题链接:P1469 找筷子 - 洛谷

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值