地图代数是一种在地理信息系统(GIS)中使用数学和逻辑运算分析栅格数据的方法。该方法由 Dana Tomlin 博士于 20 世纪 80 年代开发,应用范围广泛,从地形分析到水文模型,从生态建模到城市规划,无所不包。地图代数的工作原理是对栅格数据的每个单元格进行数学运算,从而建立数据层之间的关系。在 Python 中,我们可以使用 Rasterio 和 GDAL 等库处理栅格数据,并使用 NumPy 执行快速数学运算。例如,通过将一个地区的高程图与降水数据相结合,可以进行洪水风险分析。这些分析为环境管理、城市规划和灾害管理等领域做出了重大贡献。地图代数简化了数据分析,有助于做出更有效的决策。
栅格数据的数学运算
我们说过,地图代数的基础是对栅格数据每个单元格中的值进行数学运算。在这些数学运算中,可以使用另一个栅格数据,也可以使用一个固定值。在本例中,让我们使用固定值对 DEM 数据进行数学运算。使用 Python 进行数学运算非常简单。首先,让我们导入必要的库:
import rasterio
import numpy as np
import matplotlib.pyplot as plt
dem_path = '/content/drive/My Drive/Map_Algebra/DEM.tif'
with rasterio.open(dem_path) as src:
dem = src.read(1)
profile = src.profile
# Visualize the Digital Terrain Model
plt.figure(figsize=(10,8))
plt.imshow(dem, cmap='terrain')
plt.colorbar(label='Height (m)')
plt.title('DEM')
plt.show()