SAR(合成孔径雷达)是一种利用雷达波绘制地球表面地图的卫星图像。雷达发射电磁波,到达地面后散射回传感器。根据散射波的特性,可以确定物体表面的类型以及传感器与物体之间的距离。SAR 图像可以全天候监测,穿透干燥土壤,分辨率高达 25 厘米。因此,SAR 图像对于应急响应、国防和情报或农业等应用非常有用。
Sentinel-2 是一项宽幅、高分辨率、多光谱成像任务,支持哥白尼陆地监测研究,包括植被、土壤和水覆盖的监测,以及对内陆水道和沿海地区的观测。
本研究旨在探索和展示整合 Sentinel-1 SAR 和 Sentinel-2 MSI 卫星图像对肯尼亚基里尼亚加县姆韦阿水稻测绘的潜在益处。本研究工作利用了 2020 年 Sentinel-1A 合成孔径雷达 (SAR) 数据和协调的 Sentinel-2 MSI:多光谱仪器、Level-1C 数据。分类过程采用随机森林 (RF) 机器学习算法。使用 Google Earth Engine (GEE) 处理、分类和验证数据。研究结果为使用不同数据集(即协调的 Sentinel-2 MSI:多光谱仪器、Level-1C 和 Sentinel 1- 合成孔径雷达 (SAR) 数据)对随机森林 (RF) 算法进行图像分类的性能评估提供了宝贵的见解。
哨兵-2 MSI:多光谱仪器,1C 级,Mwea
Sentinel-2 和 Sentinel-1 数据已广泛应用于各个科学领域。Sentinel-2 多光谱仪器 (MSI) 数据的用途包括识别烧毁区域、绘制热液蚀变矿物图、评估山体滑坡敏感性以及绘制红树林范围图等。
Sentinel 1-合成孔径雷达 (SAR) Mwea
Sentinel-1 合成孔径雷达 (SAR) 图像已广泛应用于各种应用,包括土地覆盖制图、洪水监测、土壤水分检索和水稻产量估算。值得注意的是,当 Sentinel-2 MSI 的图像质量受到云层或雾的影响时,Sentinel-1 SAR 数据可以作为合适的替代品。
通过利用两种传感器的互补优势,Sentinel-2 MSI 和 Sentinel-1 SAR 数据的集成可为这些特定应用提供更好的见解和更可靠的结果。为了在土地覆盖分类中实现更高的准确性,必须将 Sentinel-1 SAR 数据与 Sentinel-2 MSI 数据协同结合。如今,Google Earth Engine (GEE) 正在成为一个强大的平台,可为 Sentinel-2 MSI 和 Sentinel-1 SAR 数据提供图像处理、数据融合、分类和交互式可视化功能。
GEE 能够融合来自不同来源(如 Sentinel-2 和 Sentinel-1)的光学和雷达数据,为用户提供地球表面的全面视图,克服了单个传感器的局限性。随机点被取并按以下方式分割;大约 75% 用于训练,25% 用于测试。LULC 是从 Sentinel 2 (MSI) 获得的,如下所示;
样本区域的 RGB 图像
样本区域的土地利用/土地覆盖率图像(黄色:非水稻,绿色:水稻)
相同的训练样本被融合起来,对 Sentinel 1 (SAR) 数据进行 LULC 分类,但首先将 Sentinel 1 (SAR) 波段在 2020 年几个月的重要性可视化,如下所示。SAR 波段有助于对卫星的穿透强度进行分类,从而对卫星的潜在应用进行分类。
2020 年 SAR 频段重要性
SAR 发射电磁波;电磁波的方向称为极化。每个电磁波都由电场和磁场组成。水平极化表示为 H,垂直极化表示为 V。SAR 传感器中使用的极化组合有四种常见:
- HH:传感器发送一个水平信号并接收一个水平信号。
- VV:传感器发送垂直信号并接收垂直信号。
- HV:传感器发送水平信号并接收垂直信号。
- VH:传感器发送垂直信号并接收水平信号
垂直极化用于检测高架物体,例如建筑物、波涛汹涌的大海或输电塔。水平极化更适合平坦和低洼的表面——河流、桥梁或例如输电线。
结果如下;
样本区域 SAR 的 LULC 图像(白色:非水稻,绿色:水稻)
总体准确率达到了 90.0987%。
将这些 RF 和其他算法集成到 Google Earth Engine (GEE) 平台中,可以高效处理大型遥感数据集,消除了独立计算机软件耗时的特性。
总之,该研究成功证明了整合 Sentinel-1A SAR 和 Sentinel-2 MSI 数据以改进肯尼亚基里尼亚加县姆韦阿水稻地图绘制的潜力。通过结合这些数据集并采用机器学习算法 RF,该研究在识别水稻种植区方面实现了更高的准确性和一致性。