融合 sentinel-1 SAR 和 sentinel-2 MSI 数据用于水稻绘图

SAR(合成孔径雷达)是一种利用雷达波绘制地球表面地图的卫星图像。雷达发射电磁波,到达地面后散射回传感器。根据散射波的特性,可以确定物体表面的类型以及传感器与物体之间的距离。SAR 图像可以全天候监测,穿透干燥土壤,分辨率高达 25 厘米。因此,SAR 图像对于应急响应、国防和情报或农业等应用非常有用。

Sentinel-2 是一项宽幅、高分辨率、多光谱成像任务,支持哥白尼陆地监测研究,包括植被、土壤和水覆盖的监测,以及对内陆水道和沿海地区的观测。

本研究旨在探索和展示整合 Sentinel-1 SAR 和 Sentinel-2 MSI 卫星图像对肯尼亚基里尼亚加县姆韦阿水稻测绘的潜在益处。本研究工作利用了 2020 年 Sentinel-1A 合成孔径雷达 (SAR) 数据和协调的 Sentinel-2 MSI:多光谱仪器、Level-1C 数据。分类过程采用随机森林 (RF) 机器学习算法。使用 Google Earth Engine (GEE) 处理、分类和验证数据。研究结果为使用不同数据集(即协调的 Sentinel-2 MSI:多光谱仪器、Level-1C 和 Sentinel 1- 合成孔径雷达 (SAR) 数据)对随机森林 (RF) 算法进行图像分类的性能评估提供了宝贵的见解。

没有任何

哨兵-2 MSI:多光谱仪器,1C 级,Mwea

Sentinel-2 和 Sentinel-1 数据已广泛应用于各个科学领域。Sentinel-2 多光谱仪器 (MSI) 数据的用途包括识别烧毁区域、绘制热液蚀变矿物图、评估山体滑坡敏感性以及绘制红树林范围图等。

没有任何

Sentinel 1-合成孔径雷达 (SAR) Mwea

Sentinel-1 合成孔径雷达 (SAR) 图像已广泛应用于各种应用,包括土地覆盖制图、洪水监测、土壤水分检索和水稻产量估算。值得注意的是,当 Sentinel-2 MSI 的图像质量受到云层或雾的影响时,Sentinel-1 SAR 数据可以作为合适的替代品。

通过利用两种传感器的互补优势,Sentinel-2 MSI 和 Sentinel-1 SAR 数据的集成可为这些特定应用提供更好的见解和更可靠的结果。为了在土地覆盖分类中实现更高的准确性,必须将 Sentinel-1 SAR 数据与 Sentinel-2 MSI 数据协同结合。如今,Google Earth Engine (GEE) 正在成为一个强大的平台,可为 Sentinel-2 MSI 和 Sentinel-1 SAR 数据提供图像处理、数据融合、分类和交互式可视化功能。

GEE 能够融合来自不同来源(如 Sentinel-2 和 Sentinel-1)的光学和雷达数据,为用户提供地球表面的全面视图,克服了单个传感器的局限性。随机点被取并按以下方式分割;大约 75% 用于训练,25% 用于测试。LULC 是从 Sentinel 2 (MSI) 获得的,如下所示;

没有任何

样本区域的 RGB 图像

没有任何

样本区域的土地利用/土地覆盖率图像(黄色:非水稻,绿色:水稻)

相同的训练样本被融合起来,对 Sentinel 1 (SAR) 数据进行 LULC 分类,但首先将 Sentinel 1 (SAR) 波段在 2020 年几个月的重要性可视化,如下所示。SAR 波段有助于对卫星的穿透强度进行分类,从而对卫星的潜在应用进行分类。

没有任何

2020 年 SAR 频段重要性

SAR 发射电磁波;电磁波的方向称为极化。每个电磁波都由电场和磁场组成。水平极化表示为 H,垂直极化表示为 V。SAR 传感器中使用的极化组合有四种常见:

  • HH:传感器发送一个水平信号并接收一个水平信号。
  • VV:传感器发送垂直信号并接收垂直信号。
  • HV:传感器发送水平信号并接收垂直信号。
  • VH:传感器发送垂直信号并接收水平信号

垂直极化用于检测高架物体,例如建筑物、波涛汹涌的大海或输电塔。水平极化更适合平坦和低洼的表面——河流、桥梁或例如输电线。

结果如下;

没有任何

样本区域 SAR 的 LULC 图像(白色:非水稻,绿色:水稻)

总体准确率达到了 90.0987%。

将这些 RF 和其他算法集成到 Google Earth Engine (GEE) 平台中,可以高效处理大型遥感数据集,消除了独立计算机软件耗时的特性。

总之,该研究成功证明了整合 Sentinel-1A SAR 和 Sentinel-2 MSI 数据以改进肯尼亚基里尼亚加县姆韦阿水稻地图绘制的潜力。通过结合这些数据集并采用机器学习算法 RF,该研究在识别水稻种植区方面实现了更高的准确性和一致性。

### 处理分析 Sentinel-1 SAR Sentinel-2 MSI 时间序列数据的方法 #### 使用 SNAP 工具处理 Sentinel-1 GRD 数据 对于 Sentinel-1 GRD 数据的预处理,可以利用 ESA 提供的专业免费软件 SNAP (Sentinel Application Platform) 进行操作。该平台提供了一系列功能来支持从原始观测到最终产品的转换过程。 具体来说,在基于 SNAP 6.0 的 Sentinel-1 数据处理流程中,主要涉及以下几个方面: - **读取输入文件**:加载来自不同轨道方向(升轨/降轨)、极化方式(VV, VH 等)以及覆盖区域的产品。 - **辐射校正**:通过应用入射角模型修正雷达回波强度差异,从而获得更一致的地表反射特性描述[^1]。 ```python from snappy import ProductIO product = ProductIO.readProduct('input_file.dim') ``` - **地形校正**:采用 DEM 数据去除地形起伏引起的几何畸变影响,使得图像能够更好地反映实际地理位置关系。 - **滤波去噪**:实施多视域合成或多看平均技术减少斑点噪声干扰;还可以考虑使用 Lee 或 Frost 滤波器进一步改善成像质量。 - **参数提取**:计算后向散射系数等物理量作为后续分类识别的基础特征指标之一。 完成上述步骤之后即可得到可用于长时间连续监测变化趋势的标准产品形式——即时间序列影像集。 #### 结合 Google Earth Engine 平台进行 Sentinel-2 MSI 数据处理 针对 Sentinel-2 MSI 数据,则推荐借助于云端大数据处理环境如 GEE (Google Earth Engine),其内置了大量的遥感算法库并能高效管理海量存档资源。下面列举了一些典型的操作环节: - **筛选有效场景**:依据云掩膜信息剔除受天气条件严重影响的部分像素单元,确保所选样本具备较高的代表性。 - **大气校正**:执行表面反射率反演运算消除太阳光照角度波动效应带来的偏差,进而实现跨时期对比研究的一致性保障。 - **植被指数构建**:选取 NDVI、EVI 等常用表达式衡量绿色植物生长状况的变化规律,并绘制相应的时空分布图谱以便直观展示动态演变模式。 最后将两组经过各自独立加工后的成果按照相同的空间分辨率规格配准拼接起来形成综合性的专题地图制品,便于开展联合解析工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gis收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值