在快速城市化的世界里,平衡建设用地和可耕地对于可持续发展至关重要,特别是在当地粮食系统在支持社区方面发挥关键作用的地区。大学作为学习中心和大量人口的中心,通常会产生对农产品的巨大需求。本博客使用先进的遥感技术探索了祖鲁兰大学夸德兰吉瓦校区周围的建设用地和可耕地的土地覆盖评估。利用归一化差异植被指数 (NDVI)、归一化差异建设用地指数 (NDBI) 和 k 均值聚类,本研究探索了过去 7 年(2017-2024 年)大学周围当地社区(Khandisa 保护区)的耕地和建设用地的演变,旨在提醒当地社区他们可以利用的农业潜力以及如何确保其潜在价值得到回报。
1. 背景
祖鲁兰大学位于夸祖鲁-纳塔尔省的夸德兰吉瓦乡村。村庄周围遍布桉树和甘蔗田,具有巨大的农业潜力。尽管如此,大学的学生和教职员工仍然依赖邻近城镇的商店购买水果和蔬菜等农产品。考虑到该大学约有 17,000 名学生,当地经济失去了从这样一个随时可用的市场获得的潜在经济收益。特别是因为针对大学社区的农业活动仍然很少。
另一方面,由于大学提供的住宿有限,社区周边的大多数开发项目都以寄宿公寓的形式进行。这确实很有用,但仅限于那些有足够资金参与建设的人,而普通社区成员则被拒之门外。
通过评估最近的土地使用模式,利益相关者可以找到提高当地耕地生产力的机会,并促进符合大学社区需求的创造性和可持续的实践。
2. 方法概述
2.1 土地覆盖分析的遥感工具
遥感技术对于土地覆盖率评估具有重要意义,因为它能够捕获大规模、高分辨率的数据。本研究中使用的两个关键指标是:
- NDVI(归一化差异植被指数):测量植被健康和密度,确定适合农业的地区,具体如下:
- NDVI=(近红外+红色)/(近红外−红色)
其中,Red 和 NIR 分别是图像的红色和近红外光谱成分。值从 -1 到 0 表示无植被表面或水,0 到 0.2 表示稀疏不健康的植被,0.2 到 0.5 表示中等植被,0.5 到 1 表示茂密健康的植被。
- NDBI(归一化差异建筑指数):通过测量城市化区域的反射差异来检测建筑区域,其公式如下:
- NDBI=短波红外+近红外/短波红外−近红外
其中,NIR 和 SWIR 分别是影像的近红外和短波红外光谱成分。NDBI 小于 0 表示区域以植被或水体为主,NDBI=0 表示裸土或稀疏的草地,NDBI > 0 表示建筑物区域。
这些指数为分类土地利用模式和评估建成区和可耕地面积之间的平衡提供了坚实的基础。
2.2 土地分类中的 K 均值聚类
K 均值聚类是一种无监督机器学习算法,根据相似性将数据分组为聚类。在本研究中,NDVI 和 NDBI 值被用作输入变量,将土地覆盖分为不同的类型,例如建成区和可耕地。这通过以下六个主要步骤实现,
- 输入数据表示
从感兴趣区域提取的图像中,计算每个像素的 NDVI 和 NDBI 值,并用于定义像素级输入特征向量,即 x =[NDVI, NDBI]
2.初始化
根据感兴趣的像素分组数量选择要初始化的 k(簇数)。在我们的例子中,k=2,因为我们的图像将被聚类为可耕地和建筑区。选择 k=2 后,k 均值聚类算法会在特征空间中初始化 2 个随机簇中心(c1 和 c2)。
3. 分配步骤
这里,图像中的每个像素被分配到两个簇中的一个,使得它与初始化簇质心的欧几里德距离最小。也就是说,如果像素向量与质心 c1 的距离相对于与 c2 的距离最小,那么该像素向量将被分配到簇 1,依此类推。
4. 更新步骤
按照步骤 3 中的描述,将每个像素分配到两个类中的一个之后,簇质心将更新为每个簇的平均向量。例如,簇 1 的新质心将成为分配给簇 1 的所有向量的平均值,依此类推。
5.迭代优化
此步骤迭代重复步骤 3 和 4,直到质心稳定(不会发生显著变化)或达到最大设定迭代次数。
6.分类输出
在步骤5之后,每个像素现在都标有一个簇ID(0或1)。这些簇分别对应于可耕地和建设用地。
NDVI 和 NDBI 的互补性使得能够有效地对可耕地和建设用地进行分类,为农业规划提供有用信息,以提高大学周边地区的生产力。
2.3 研究区域与数据收集
研究区域包括 Kwadlangezwa 和 Khandisa 周围的区域,如下图 1 所示。
图 1:研究区域代表祖鲁兰大学周边感兴趣的区域
过去 7 年(2017-2024 年)期间,使用谷歌地球引擎获取了 Sentinel 2 卫星图像,云量小于 0.05%。然后处理这些图像以得出 NDVI 和 NDBI 指数。然后应用 K-均值聚类对土地覆盖类型进行分类,从而生成该地区的可耕地/建筑面积地图。
2.4 面积计算和时间序列构建
对每幅获得的图像进行分类后,通过谷歌地球引擎的 Image.pixelArea().divide(1e6) 函数将代表每个类别的像素转换为平方公里的面积。此后,计算 8 年期间可耕地和建筑面积的月平均值,得到图 2 所示的时间序列图。此外,从分类图像中,使用模态像素值绘制了年度时空图。时空图见图 3。
2.5 时间序列趋势分析
为了评估耕地和建筑面积的趋势,在贝叶斯框架下,它们的时间序列被建模为 yₜ=β ₀ + β₁t+eₜ。其中,β ₀是截距,β₁ 是斜率,表示时间序列相对于时间的变化率,是趋势分析感兴趣的参数。这里,信息量较少的先验 β ₀和 β₁ 被认为是正态分布的,平均值为 0,方差为 10²。假设似然函数呈正态分布,平均值为 β ₀ + β₁t,方差 σ² 为 eₜ。其中假设 σ² 具有半正态先验分布,σ = 1。根据贝叶斯定理,使用观测数据通过似然函数更新先验分布以获得后验分布。然后使用 MCMC 方法对其进行采样以获得后验分布的分布图。
3.结果和发现
3.1 土地覆盖分类时间序列
图 2:祖鲁兰大学周边耕地和建筑面积的月度时间序列
图 2:2017 年至 2024 年祖鲁兰大学周边耕地和建筑面积的年度时空图
地图表明,在所关注的时间段内,可耕地面积和建筑面积没有显著差异。
3.2 趋势分析
图 3:带有趋势线和置信区间的耕地时间序列
图4:耕地面积时间序列模型参数后验分布
图 5:带有趋势线和置信带的建筑面积时间序列。
图 6:建筑区时间序列模型参数后验分布
3.3 K 均值聚类和趋势分析的启示
在以 NDVI 和 NDBI 作为特征对提取的图像进行 K 均值聚类后,结果显示,在所关注的时间段内,可耕地面积平均为 8.5 平方公里,建成区面积平均为 7.6 平方公里。在承认用作特征的指数具有季节性的同时,趋势分析结果表明,对于可耕地面积和建成区面积,两种土地覆盖类型的面积都没有显著变化。这可以从可耕地面积和建成区面积时间序列的 β₁(斜率参数)后验分布的 95% 可信区间看出,因为它们的分布都包含 0。这意味着斜率在统计上与 0 没有显著差异。请参见图 4 和图 6,分别了解与可耕地面积和建成区时间序列相关的线性模型参数的后验分布。
尽管外部学生宿舍的数量不断增加,但观察到的结果是合理的,因为大多数新的开发项目都涉及现有宿舍的垂直扩建,以容纳更多的学生。
4. 启示与建议
4.1 对于当地社区
当地农民和社区成员可以利用这些知识作为鼓励,增加他们对农业生产力的参与,从而改善他们的财务状况。农民合作社和当地市场等举措可以加强食品供应链,同时支持当地经济。
4.2 对于大学利益相关者
鉴于祖鲁兰大学农业和商业部门的完善,以及其对社区参与计划的高度重视,这为他们提供了一个与当地社区合作参与教育计划和研究项目的机会,这些计划和研究项目侧重于可持续农业和经济/营销模式,以促进相关农产品的生产和销售,面向大学人口。大学可以进一步鼓励大学餐饮服务从当地社区采购生食。这将进一步加强大学与当地社区之间的联系。
4.3 政策考量
尽管没有迹象表明建筑面积出现明显增长趋势,但根据 UNIZULU-Facts-and-Figures-2020,大学学生人数的增长趋势表明对住宿的需求增加,这反过来可能会影响可耕地。因此,政策制定者应考虑实施土地使用法规,保护可耕地免受潜在侵占,并鼓励建造高层建筑作为学生宿舍。
此外,还应制定激励措施,帮助当地社区成员获取旨在支持农村人口的农业政策知识和资源。南非政府已制定了大部分激励措施,如综合农业支持计划 (CASP)、AgriBEE(农业广泛黑人经济赋权计划)、国家农业营销委员会 (NAMC)、国家发展计划 (NDP) 等。
5. 结论
这项研究证明了将先进的遥感技术与机器学习算法相结合以评估土地覆盖模式的价值。通过确定大学附近的农业机会,利益相关者可以满足粮食需求,同时保护宝贵的土地资源并促进当地经济发展。当地社区、大学和政策制定者之间的合作对于实现长期可持续发展至关重要。
6. 研究方法的局限性
6.1 数据的时间分辨率
使用 Sentinel-2 数据的月平均值可能会忽略土地覆盖变化的短期变化,而这可以提供更细致的见解。
6.2 聚类算法约束
K 均值聚类假设球形聚类,可能不考虑复杂的空间关系,可能会影响分类准确性。
6.3 环境因素
本研究没有明确考虑可能影响植被和建筑区变化的外部因素,例如天气异常、土壤退化或人类活动。
6.4 排除社会经济数据
评估仅限于地理空间和光谱指标,排除可能更好地解释耕地利用情况的关键社会经济因素(例如当地耕作实践、经济激励措施)。
6.5 NDVI 和 NDBI 的局限性
- NDVI 可能会在植被茂密的地区饱和,从而可能低估植被质量。
- 在植被稀疏或土地覆盖混合的地区,NDBI 容易被错误分类。