文章链接:https://mp.weixin.qq.com/s/Gm5EPnjw8iI1hEyr58lRGw
今天我们从科学问题的视角对近期调研的论文进行梳理,目的在于明确现有医学图像分割方法主要针对的科学问题与技术问题,从而回答科研实践中经常面临的“做什么”,“为什么做”,“怎么做” 这几个核心问题,进而确定研究目标,想出idea。
医学图像分割任务隶属于图像分割任务,与自然图像分割、遥感图像分割一同作为图像分割任务的三驾马车。医学图像分割能够帮助医生快速定位组织与病灶、减轻医生手动标注的负担,进而提升疾病诊断准确率与效率。因此,快速准确的医学图像分割对疾病诊断具有重要意义。但目前医学图像分割面临诸多问题,例如图像模糊、标注成本高、模型可解释性、推理实时性等,这些问题阻碍了医学图像分割研究的发展与落地应用。
我们首先介绍常见的医学图像类型。主要包括超声、CT、MRI、X光、病理切片等。往往针对特定的任务,临床上会有最常用的成像手段。这种现象的原因是多方面的,往往受诊疗费用、图像清晰度、检查耗费时间、医学指南等的共同影响。下面首先对每种模态数据的特点进行总结。
超声图像:基于声波在不同密度的组织中传播的速度和反射率成像。具有无辐射,实时成像,费用低等特点,适合产科、心脏检查及腹部器官检查。但由于其软组织成像分辨率较低,难以区分组织与边界,导致模型分割结果出现过分割与欠分割。
CT:通过X射线和计算机重建技术生成断层图像,提供体内的三维结构信息。对不同密度的组织(骨骼、软组织、液体等)有良好的分辨能力,特别适用于骨骼、内脏器官的成像。由于能够精确展示复杂解剖结构,常用于创伤、肿瘤和脏器疾病的诊断。但由于CT辐射剂量较高,软组织分辨率不如MRI。
MRI:通过强磁场和射频脉冲对体内的氢原子进行成像,主要适合软组织结构的展示,如脑部、脊椎、肌肉、关节、心脏等。MRI能够生成不同加权图像(如T1、T2加权图像),每种加权图像反映不同的组织特性和病理情况。图像的对比度较好,细节丰富,软组织