在NVIDIA Jetson Nano上部署YOLOv5算法,并使用TensorRT和DeepStream进行加速

部署YOLOv5算法在NVIDIA Jetson Nano上并使用TensorRT和DeepStream进行加速涉及几个关键步骤。下面是一个详细的指南:

步骤 1: 准备YOLOv5模型

训练或下载预训练模型:首先,你需要有一个YOLOv5模型。你可以自己训练一个模型,或者使用从YOLOv5的GitHub仓库下载的预训练模型。

git clone -b v7.0 https://github.com/ultralytics/yolov5.git

进入yolo目录

cd yolov5

下载权重:

wget https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt

这将下载一个yolov5.pt文件

转换模型格式:YOLOv5默认使用PyTorch框架。为了使用TensorRT优化,你需要将PyTorch模型转换成ONNX格式。使用以下命令可以完成这一转换:

python export.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值