matlab:求逆总结

请关注公众号《硬件软件极客部落》,将分享更多内容

前言:

在很多场合需要用到矩阵求逆,如最小而成,PLS,CCA,PCA等一系列算法中,在MATLAB中,求逆矩阵可以使用内置函数inv,但更好的做法是使用矩阵除法(/ 或 \),因为它数值稳定且通常比直接求逆快得多。请注意,在实际应用中,如果矩阵不可逆(行列式为0),不应使用inv,因为它会导致错误或不稳定的结果。在使用inv前,应先检查矩阵的行列式是否为零。而使用矩阵除法\时,MATLAB会自动处理奇异矩阵(不可逆的矩阵)。

定义矩阵:

>> a=[1 2 3 4;5 6 7 8;8 9 2 5;1 2 4 5]

a =

     1     2     3     4
     5     6     7     8
     8     9     2     5
     1     2     4     5

一、单位矩阵使用eye


>> I = eye(4,4)

I =

     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

二、行列式判断

>> det(a)

ans =

     8

三、行列式计算inv 、\ 、/、(矩阵)^-1

①、inv

>> inv(a)

ans =

   -6.1250   -0.3750    0.5000    5.0000
    6.8750    0.6250   -0.5000   -6.0000
    2.6250    0.8750   -0.5000   -3.0000
   -3.6250   -0.8750    0.5000    4.0000

②、\


>> a\I

ans =

   -6.1250   -0.3750    0.5000    5.0000
    6.8750    0.6250   -0.5000   -6.0000
    2.6250    0.8750   -0.5000   -3.0000
   -3.6250   -0.8750    0.5000    4.0000


③、/

>> I/a

ans =

   -6.1250   -0.3750    0.5000    5.0000
    6.8750    0.6250   -0.5000   -6.0000
    2.6250    0.8750   -0.5000   -3.0000
   -3.6250   -0.8750    0.5000    4.0000

④、(矩阵)^-1

>> a^-1

ans =

   -6.1250   -0.3750    0.5000    5.0000
    6.8750    0.6250   -0.5000   -6.0000
    2.6250    0.8750   -0.5000   -3.0000
   -3.6250   -0.8750    0.5000    4.0000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式宇宙联盟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值