Paper Link
CVaR robust Mean-CVaR portfolio optimization
Pub Date
2013.09 Applied Mathematics
Abstract
Risk and return are uncertain parameters in the suggested portfolio optimization models and should be estimated to solve the problem. However, the estimation might lead to large error in the final decision.
One of the widely used and effective approaches for optimization with data uncertainty is robust optimization
. In this paper, we present a new robust portfolio optimization technique for mean-CVaR portfolio selection problem under the estimation risk in mean return..
We compare the performance of the CVaR robust mean-CVaR model with robust mean-CVaR models using interval and ellipsodial uncertainty sets.
Introduction
在经典MV模型中,使用方差度量模型风险具有一定的局限性,VaR仅仅考虑了期望收益的下行风险,并且给出了在设定时间段内,一定置信区间下的最大损失风险. 但是同样VaR也存在缺点,即不具有次可加性(subadditivity
),并且VaR为非凸(nonconvex
)且非光滑(nonsmooth
),因此存在局部极小值,因此学者们引入了条件在险价值(CVaR).
VaR implies that
What is the maximum loss that we realize
, but CVaR asksHow do we expect to incur losses when situation is undesirable
.
数值实验表明,最小化CVaR得到的最优解和最小化VaR得到的最优解相近,因为VaR的值总是小于等于CVaR. 但是在模型中风险和收益都是不确定参数,可以使用鲁棒优化的技术处理.
Mean-CVaR
考虑
n
≥
2
n\geq 2
n≥2项资产,
S
1
,
S
2
,
…
,
S
n
S_1, S_2, \dots, S_n
S1,S2,…,Sn,令
μ
i
\mu_i
μi表示
S
i
S_i
Si的期望收益,
x
i
x_i
xi表示第
i
i
i项资产的投资权重,可以得到组合收益如下
E
[
x
]
=
μ
1
x
1
+
⋯
+
μ
n
x
n
=
μ
T
x
(1)
\mathbb{E}[x]=\mu_1x_1+\dots+\mu_nx_n=\mu^Tx\tag{1}
E[x]=μ1x1+⋯+μnxn=μTx(1)
可以设置所有的可行组合是一个非空多边形(nonempty polyhedral
),表示为
Ω
=
{
x
∣
A
x
=
b
,
C
x
≥
d
}
\Omega=\{x\mid Ax=b, Cx\geq d\}
Ω={x∣Ax=b,Cx≥d},其中
A
A
A是一个
m
×
n
m\times n
m×n的矩阵,
b
b
b是一个
m
m
m维向量,
C
C
C是
p
×
n
p\times n
p×n的矩阵,
d
d
d是
p
p
p维向量,一种典型约束为
∑
i
=
1
n
x
i
=
1
\sum_{i=1}^n x_i=1
∑i=1nxi=1.
令
f
(
x
,
y
)
f(x, y)
f(x,y)表示损失函数,其中
x
x
x是在可行组合中选择的一种方案,
y
y
y是表示
n
n
n项资产收益率向量的随机事件.
the negative of the portfolio return that is nonconvex linear function of the portfolio variables x x x:
f
(
x
,
y
)
=
−
y
T
x
=
−
[
y
1
x
1
+
⋯
+
y
n
x
n
]
(2)
f(x, y)=-y^Tx=-[y_1x_1+\dots+y_nx_n]\tag{2}
f(x,y)=−yTx=−[y1x1+⋯+ynxn](2)
对于给定决策
x
x
x,损失的累积分布函数可以计算如下
ψ
(
x
,
γ
)
=
∫
f
(
x
,
y
)
≤
γ
p
(
y
)
d
y
(3)
\psi(x, \gamma)=\int_{f(x, y)\leq \gamma}p(y)dy\tag{3}
ψ(x,γ)=∫f(x,y)≤γp(y)dy(3)
给定置信度
α
\alpha
α,关于组合变量
x
x
x的
α
−
\alpha-
α−VaR表示为
V
a
R
α
(
x
)
=
min
{
γ
∈
R
∣
ψ
(
x
,
γ
)
≥
α
}
(4)
VaR_\alpha(x)=\min\{\gamma\in\mathbb{R}\mid \psi(x, \gamma)\geq \alpha\}\tag{4}
VaRα(x)=min{γ∈R∣ψ(x,γ)≥α}(4)
并据此定义出
α
−
\alpha-
α−CVaR如下
C
V
a
R
α
(
x
)
=
1
1
−
α
∫
f
(
x
,
y
)
≥
V
a
R
α
(
x
)
f
(
x
,
y
)
p
(
y
)
d
y
(5)
CVaR_\alpha(x)=\frac{1}{1-\alpha}\int_{f(x, y)\geq VaR_\alpha(x)}f(x, y)p(y)dy\tag{5}
CVaRα(x)=1−α1∫f(x,y)≥VaRα(x)f(x,y)p(y)dy(5)
定理 1:
C
V
a
R
α
(
x
)
≥
V
a
R
α
(
x
)
CVaR_\alpha(x)\geq VaR_\alpha(x)
CVaRα(x)≥VaRα(x),但是一般情况下,最小化CVaR和最小化VaR不是等效的.
考虑到计算的复杂程度,一般使用如下较为简单的辅助方程
F
α
(
x
,
γ
)
=
γ
+
1
1
−
α
∫
f
(
x
,
y
)
≥
γ
(
f
(
x
,
y
)
−
γ
)
p
(
y
)
d
y
(6)
F_\alpha(x, \gamma)=\gamma+\frac{1}{1-\alpha}\int_{f(x, y)\geq \gamma}(f(x, y)-\gamma)p(y)dy\tag{6}
Fα(x,γ)=γ+1−α1∫f(x,y)≥γ(f(x,y)−γ)p(y)dy(6)
或者等效的
F
α
(
x
,
γ
)
=
γ
+
1
1
−
α
∫
(
f
(
x
,
y
)
−
γ
)
+
p
(
y
)
d
y
(7)
F_\alpha(x, \gamma)=\gamma+\frac{1}{1-\alpha}\int(f(x, y)-\gamma)^+p(y)dy\tag{7}
Fα(x,γ)=γ+1−α1∫(f(x,y)−γ)+p(y)dy(7)
可以证明
F
α
F_\alpha
Fα具有如下性质
- F α F_\alpha Fα是关于 γ \gamma γ的凸函数
- V a R α VaR_\alpha VaRα 是 F α F_\alpha Fα关于 γ \gamma γ取最小值的情况
- 在 F α F_\alpha Fα关于 γ \gamma γ的最小化函数为 C V a R α CVaR_\alpha CVaRα
可以推出,为了最小化关于
x
x
x的
C
V
a
R
α
(
x
)
CVaR_\alpha(x)
CVaRα(x),需要将
F
α
(
x
,
γ
)
F_\alpha(x, \gamma)
Fα(x,γ)同时关于
x
x
x和
γ
\gamma
γ最小化.
min
x
C
V
a
R
α
(
x
)
=
min
x
,
γ
F
α
(
x
,
γ
)
(8)
\min_x CVaR_\alpha(x)=\min_{x, \gamma}F_\alpha(x, \gamma)\tag{8}
xminCVaRα(x)=x,γminFα(x,γ)(8)
这样就可以将求解CVaR的过程与VaR分离.
由于模型
(
7
)
(7)
(7)中的概率密度函数比较复杂,可以使用一些场景
y
i
,
i
=
1
,
…
,
T
y_i, i=1, \dots, T
yi,i=1,…,T进行模拟计算(离散化处理),考虑对函数
F
α
(
x
,
γ
)
F_\alpha(x, \gamma)
Fα(x,γ)的近似如下
F
ˉ
α
(
x
,
γ
)
=
γ
+
1
(
1
−
α
)
T
∑
i
=
1
T
(
f
(
x
,
y
i
)
−
γ
)
+
(9)
\bar{F}_\alpha(x, \gamma)=\gamma+\frac{1}{(1-\alpha)T}\sum_{i=1}^T(f(x, y_i)-\gamma)^+\tag{9}
Fˉα(x,γ)=γ+(1−α)T1i=1∑T(f(x,yi)−γ)+(9)
这样在求解
min
x
C
V
a
R
α
(
x
)
\min_x CVaR_\alpha(x)
minxCVaRα(x)问题时,可以用
F
ˉ
α
(
x
,
γ
)
\bar{F}_\alpha(x, \gamma)
Fˉα(x,γ)替换
F
α
(
x
,
γ
)
F_\alpha(x, \gamma)
Fα(x,γ)
min
x
,
γ
γ
+
1
(
1
−
α
)
T
∑
i
=
1
T
(
f
(
x
,
y
i
)
−
γ
)
+
(10)
\min_{x, \gamma}\gamma+\frac{1}{(1-\alpha)T}\sum_{i=1}^T(f(x, y_i)-\gamma)^+\tag{10}
x,γminγ+(1−α)T1i=1∑T(f(x,yi)−γ)+(10)
为了求解优化问题,引入人工变量
z
i
z_i
zi替换
(
f
(
x
,
y
i
)
−
γ
)
+
(f(x, y_i)-\gamma)^+
(f(x,yi)−γ)+,同时加入约束条件
z
i
≥
0
z_i\geq 0
zi≥0和
z
i
≥
f
(
x
,
y
i
)
−
γ
z_i\geq f(x, y_i)-\gamma
zi≥f(x,yi)−γ约束
min
γ
+
1
(
1
−
α
)
T
∑
i
=
1
T
z
i
s
.
t
.
{
z
i
≥
0
,
i
=
1
,
…
,
T
z
i
≥
f
(
x
,
y
i
)
−
γ
,
i
=
1
,
…
,
T
x
∈
Ω
(11)
\min \gamma+\frac{1}{(1-\alpha)T}\sum_{i=1}^Tz_i\\ s.t. \begin{cases} z_i\geq 0, i=1, \dots, T\\ z_i\geq f(x, y_i)-\gamma, i=1, \dots, T\\ x\in\Omega \end{cases}\tag{11}
minγ+(1−α)T1i=1∑Tzis.t.⎩⎪⎨⎪⎧zi≥0,i=1,…,Tzi≥f(x,yi)−γ,i=1,…,Tx∈Ω(11)
考虑在达到指定期望收益的情况下,最小化风险模型
min
γ
+
1
(
1
−
α
)
T
∑
i
=
1
T
z
i
s
.
t
.
{
μ
T
x
≥
R
z
i
≥
0
,
i
=
1
,
…
,
T
z
i
≥
f
(
x
,
y
i
)
−
γ
,
i
=
1
,
…
,
T
x
∈
Ω
(12)
\min \gamma+\frac{1}{(1-\alpha)T}\sum_{i=1}^Tz_i\\ s.t. \begin{cases} \mu^Tx\geq R\\ z_i\geq 0, i=1, \dots, T\\ z_i\geq f(x, y_i)-\gamma, i=1, \dots, T\\ x\in\Omega \end{cases}\tag{12}
minγ+(1−α)T1i=1∑Tzis.t.⎩⎪⎪⎪⎨⎪⎪⎪⎧μTx≥Rzi≥0,i=1,…,Tzi≥f(x,yi)−γ,i=1,…,Tx∈Ω(12)
或者等价的
min
−
μ
T
x
+
λ
(
γ
+
1
(
1
−
α
)
T
∑
i
=
1
T
z
i
)
s
.
t
.
{
z
i
≥
0
,
i
=
1
,
…
,
T
z
i
≥
f
(
x
,
y
i
)
−
γ
,
i
=
1
,
…
,
T
x
∈
Ω
(13)
\min -\mu^Tx+\lambda(\gamma+\frac{1}{(1-\alpha)T}\sum_{i=1}^Tz_i)\\ s.t. \begin{cases} z_i\geq 0, i=1, \dots, T\\ z_i\geq f(x, y_i)-\gamma, i=1, \dots, T\\ x\in\Omega \end{cases}\tag{13}
min−μTx+λ(γ+(1−α)T1i=1∑Tzi)s.t.⎩⎪⎨⎪⎧zi≥0,i=1,…,Tzi≥f(x,yi)−γ,i=1,…,Tx∈Ω(13)
其中
λ
≥
0
\lambda\geq 0
λ≥0表示风险回避系数,用于平衡期望收益和
C
V
a
R
α
(
x
)
CVaR_\alpha(x)
CVaRα(x).
It is important to note that there is an equivalence between R R R and λ \lambda λ so that the problems ( 12 ) (12) (12) and ( 13 ) (13) (13) generate the same efficient frontiers.
由于
f
(
x
,
y
)
f(x, y)
f(x,y)是关于
x
x
x的线性函数,即
z
i
≥
f
(
x
,
y
i
)
−
γ
z_i\geq f(x, y_i)-\gamma
zi≥f(x,yi)−γ为线性约束条件,因此问题
(
13
)
(13)
(13)是一个线性规划问题 ,可以使用单纯形法(simplex
)或者内点法(interior point methods
).