RGF相关Python2及Python3的库解决

这个博客展示了如何在Python中使用RGF(Regularized Greedy Forest)分类器进行机器学习任务。通过sklearn库加载鸢尾花数据集,并使用RGFClassifier进行交叉验证,计算平均得分。请注意,RGF的最新版本可能不支持Python2,建议使用Python3.9及以下版本的rgf-python包。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源码库:

RGF-team/rgf​​​​​​

https://github.com/RGF-team/rgf/releases 

rgf包的安装:

注意python2 及python3的包有区别,最新的rgf-python版本不支持python2,请安装之前的python版本,支撑python2的最高版本是3.9

pip install rgf-python==3.4.0

RGF源码如下:

Examples

from sklearn import datasets
from sklearn.utils.validation import check_random_state
from sklearn.model_selection import StratifiedKFold, cross_val_score
from rgf.sklearn import RGFClassifier

iris = datasets.load_iris()
rng = check_random_state(0)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]

rgf = RGFClassifier(max_leaf=400,
                    algorithm="RGF_Sib",
                    test_interval=100,
                    verbose=True)

n_folds = 3

rgf_scores = cross_val_score(rgf,
                             iris.data,
                             iris.target,
                             cv=StratifiedKFold(n_folds))

rgf_score = sum(rgf_scores)/n_folds
print('RGF Classifier score: {0:.5f}'.format(rgf_score))

页面下拉,注意支持的版本

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水浩宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值