PyTorch-YOLOV3源码解读(网络结构)

本文详细解读了如何使用PyTorch实现YOLOv3物体检测模型,包括数据集加载预处理、网络结构解析以及loss计算。重点介绍了config文件的解析和models.py中模型构建的过程,适合理解YOLOv3实现者阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录

  1. 数据集加载和预处理
  2. 网络结构
  3. loss计算


前言

源代码连接https://github.com/eriklindernoren/PyTorch-YOLOv3
当前代码用到的数据集为coco2014,这里提供官网地址https://cocodataset.org/


构建网络模型models.py

代码中构建模型的方法是通过读取config/yolov3.cfg的配置文件,进行搭建的
这里可以通过Netron查看网络结构,由于网络很长,这里只截取了部分结构。
在这里插入图片描述

yolov3.cfg中每个层次结构开头对会有[…]来进行说明,当前属于什么网络层次,和一些必要的参数。

[net]
# Testing
#batch=1
#subdivisions=1
# Training
batch=16
subdivisions=1
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1

[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky

# Downsample

[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky.......

这里我们先看utils/parse_config

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值