LLaMA-Factory 快速入门(五):终端命令实操记录

1. 引言

在使用 LLaMA-Factory 进行大模型的微调、评估和部署时,llamafactory-cli 是最常用的命令行工具。它不仅支持命令行对话、训练、评估,还提供了网页界面、API 服务等多种交互方式。

本文将详细介绍 llamafactory-cli 的常用命令及其使用方法,帮助你快速上手并高效完成相关任务。

2. 命令使用

命令功能简述
llamafactory-cli api启动 OpenAI 风格的 API 服务
llamafactory-cli chat在命令行中启动聊天界面
llamafactory-cli eval评估模型
llamafactory-cli export合并 LoRA 适配器并导出模型
llamafactory-cli train训练模型
llamafactory-cli webchat启动网页聊天界面
llamafactory-cli webui启动 LlamaBoard 界面
llamafactory-cli version显示版本信息

2.1 version(显示版本)

功能显示 LLaMA-Factory 的版本信息,验证安装是否成功

执行命令:

llamafactory-cli version

执行后的效果如下:

在这里插入图片描述

2.2 webui(启动 LlamaBoard 界面)

功能启动可视化界面 LlamaBoard,提供图形化操作入口

执行命令:

llamafactory-cli webui

执行后返回:

在这里插入图片描述
浏览器访问:http://127.0.0.1:7860
在这里插入图片描述

2.3 chat(命令行聊天)

功能接在终端中与模型进行对话,无需启动网页

最小化命令:

llamafactory-cli chat \
  --model_name_or_path 模型名称或本地路径 \
  --template 模板名称

例如:

llamafactory-cli chat \
  --model_name_or_path /Users/yanglinwei/.cache/modelscope/hub/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
  --template deepseekr1

执行效果如下:
在这里插入图片描述
当然也可以从模型训练完的chekcpoint启动,命令如下:

llamafactory-cli chat \
  --model_name_or_path 模型名称或本地路径 \
  --adapter_name_or_path 训练后的路径\
  --template 模板名称

例如:

llamafactory-cli chat \
  --model_name_or_path /Users/yanglinwei/.cache/modelscope/hub/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
  --adapter_name_or_path saves/DeepSeek-R1-1.5B-Distill/lora/cx_666_final_optimized \
  --template deepseekr1

2.4 webchat(网页聊天)

功能启动网页端聊天界面

webchat的功能跟chat命令差不多,只是webchat是给了一个web页面进行对话。最小化命令如下:

llamafactory-cli webchat \
  --model_name_or_path 模型名称或本地路径 \
  --template 模板名称

例如:

llamafactory-cli webchat \
  --model_name_or_path /Users/yanglinwei/.cache/modelscope/hub/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
  --template deepseekr1

在这里插入图片描述
当然也可以从模型训练完的chekcpoint启动webchat,跟chat命令差不多:

llamafactory-cli webchat \
  --model_name_or_path 模型名称或本地路径 \
  --adapter_name_or_path 训练后的路径\
  --template 模板名称

2.5 api(启动 API 服务)

功能启动 OpenAI 风格的 API 服务

最小化命令:

llamafactory-cli chat \
  --model_name_or_path 模型名称或本地路径 \
  --template 模板名称

例如执行:

llamafactory-cli api \
  --model_name_or_path /Users/yanglinwei/.cache/modelscope/hub/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
  --template deepseekr1

可以看到输出了如下信息:
在这里插入图片描述
浏览器访问:http://localhost:8000/docs
在这里插入图片描述
可以看到开放了3种API,分别是:

接口名称路径说明
List Models/v1/models列出当前可用的模型,用于查看可选择的模型信息
Create Chat Completion/v1/chat/completions生成聊天回复,用于对话或文本生成
Create Score Evaluation/v1/score/evaluation对模型输出进行评分或评估,用于检测生成内容质量

直接执行ListModels列出当前可用的模型,可以看见返回:
在这里插入图片描述
执行Create Chat Completion,示例请求内容如下:

{
  "model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
  "messages": [
    {
      "role": "user",
      "content": "你好,可以自我介绍一下吗?"
    }
  ],
  "do_sample": true,
  "temperature": 0.7,
  "top_p": 0.9,
  "n": 1,
  "max_tokens": 512,
  "stream": false
}

可以看到返回:
在这里插入图片描述

2.6 train(训练模型 )

功能启动训练流程,对模型进行微调

详情可以参考:《LLaMA-Factory 快速入门(一):Mac 下大模型微调与部署全流程》

2.7 eval(评估模型 )

功能::对训练后的模型进行性能评估

详情可以参考:《LLaMA-Factory 快速入门(一):Mac 下大模型微调与部署全流程》

2.8 export(导出模型 )

功能合并 LoRA 适配器并导出最终模型

详情可以参考:《LLaMA-Factory 快速入门(一):Mac 下大模型微调与部署全流程》

3. 总结

本文详细介绍了 LLaMA-Factory 的命令行工具 llamafactory-cli 的常用功能,包括版本检查、命令行聊天、网页聊天、可视化界面、API 服务,以及训练、评估、导出等核心操作。

  • 可以先从 chat / webchat 开始,快速体验模型效果;
  • 如果需要部署服务,建议使用 api 模式;
  • 完整训练流程中,train → eval → export 是必经的三个步骤。

通过灵活使用这些命令,大家可以快速搭建起属于自己的大模型微调与应用环境 。

<think>首先,用户的问题是:“(llame_factory) F:\code\LLaMA-Factory>pip install -e ".[torch,metrics]" Obtaining file:///F:/code/LLaMA-Factory ERROR: file:///F:/code/LLaMA-Factory does not appear to be a Python project: neither 'setup.py' nor 'pyproject.toml' found.” 这是一个错误信息,表明在尝试使用pip安装一个本地包时失败了,因为缺少必要的文件(setup.py或pyproject.toml)。用户可能是在寻求如何解决这个问题。 我的回答需要: 1. 使用中文。 2. 回答完问题后,提出3-5个相关问题。 3. 相关问题必须以“§§相关问题§§”开头,并在同一行输出。 4. 禁止换行分散,所以相关问题应该连续列出。 关键点:用户遇到了pip安装错误,因为项目目录中没有setup.py或pyproject.toml文件。这通常意味着项目没有正确设置或缺少配置。 我的回答应该: - 解释错误原因。 - 提供解决方案。 - 然后提出相关问题。 错误解释:用户正在尝试安装一个名为LLaMA-Factory的包,使用pip install -e ".[torch,metrics]",但pip报告说目录F:\code\LLaMA-Factory没有setup.py或pyproject.toml文件,因此不是一个有效的Python项目。 解决方案: 1. 确保项目目录中包含setup.py或pyproject.toml文件。这些文件是Python包的必要配置。 2. 如果文件缺失,用户可能需要创建这些文件或从源代码中获取它们。 3. 对于使用pip install -e进行可编辑安装,项目需要这些文件来定义包结构。 在LLaMA-Factory的上下文中,用户可能正在克隆一个仓库,但缺少这些文件。用户应该检查仓库是否包含这些文件,或者是否在正确的目录中。 常见原因: - 项目可能使用其他构建工具,如setuptools或poetry。 - 用户可能没有初始化项目或创建必要的文件。 建议: - 检查项目目录中是否有setup.py或pyproject.toml。 - 如果没有,用户可能需要手动创建它们或运行一个命令来生成。 - 对于LLaMA-Factory,参考其文档或README文件以获取安装说明。 现在,回答结构: 1. 先用中文解释错误。 2. 提供解决方案。 3. 然后输出“§§相关问题§§”,后跟3-5个相关问题。 相关问题:基于用户的问题和我的回答。用户的问题是安装错误,所以相关问题应该围绕: - 如何创建setup.py或pyproject.toml。 - 其他安装方法。 - 常见错误排查。 - 特定于LLaMA-Factory的安装。 列出3-5个相关问题: 1. 如何为Python项目创建setup.py文件? 2. 使用pyproject.toml代替setup.py有哪些优势? 3. 在Windows系统中安装Python包时常见的错误有哪些? 4. 对于LLaMA-Factory项目,正确的安装步骤是什么? 5. 如果项目缺少配置文件,是否有自动生成的方法? 确保相关问题数量在3-5个。 最终回答格式: - 回答内容。 - 然后“§§相关问题§§”后直接列出问题,如“1. ... 2. ... 3. ...”,在同一行。 完整输出: [回答部分] §§相关问题§§1. ... 2. ... 3. ... 4. ... 现在,撰写回答。</think>这个错误信息表明您在使用pip安装LLaMA-Factory项目时遇到了问题,原因是pip无法识别项目目录为有效的Python包。具体来说: - 错误核心:`ERROR: file:///F:/code/LLaMA-Factory does not appear to be a Python project: neither 'setup.py' nor 'pyproject.toml' found.` 表示pip在目录`F:\code\LLaMA-Factory`中找不到`setup.py`或`pyproject.toml`文件,这些文件是定义Python包结构和依赖的必要配置文件。 - 常见原因:项目可能未正确初始化、配置文件被删除或缺失,或者您未在项目根目录下操作。 - 解决方案: 1. **检查项目文件**:确保目录`F:\code\LLaMA-Factory`包含`setup.py`或`pyproject.toml`文件。如果缺失,从官方仓库重新克隆代码(例如使用`git clone`)。 2. **手动创建配置文件**:如果项目是自定义的,创建一个简单的`setup.py`文件(示例内容如下),然后重新运行`pip install -e ".[torch,metrics]"`: ```python from setuptools import setup, find_packages setup( name="llama_factory", version="0.1.0", packages=find_packages(), install_requires=["torch", "metrics"] # 根据需求添加依赖 ) ``` 3. **使用项目工具**:如果LLaMA-Factory提供特定安装脚本(如`install.sh`),优先运行它。参考项目README或文档确认安装步骤。 4. **验证环境**:确保在虚拟环境(如`llame_factory`)中操作,并使用`cd F:\code\LLaMA-Factory`切换到正确目录再执行命令。 如果问题持续,检查文件权限或尝试`pip install -e .`(不带额外参数)测试基本安装。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值