GCD
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2136 Accepted Submission(s): 1087
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3 1 1 10 2 10000 72
Sample Output
1 6 260
Source
题意大概:给定N,M(2<=N<=1000000000, 1<=M<=N), 求1<=X<=N 且gcd(X,N)>=M的个数。
解法:数据量太大,用常规方法做是行不通的。后来看了别人的解题报告说,先找出N的约数x,
设y=N/x,y的欧拉函数为小于y且与y互质的数的个数。
设与y互质的的数为p1,p2,p3,…,p4
那么gcd(x* pi,N)= x >= M。
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int oula(int n)
{
int res=1,i;
for(i=2; i*i<=n; i++)
if(n%i==0)//i是素数
{
n/=i;//因为要算ni-1次方,所以在这先除一下
res*=i-1;
while(n%i==0)
{
n/=i;//n越来越小
res*=i;
}
}
if(n>1)
res*=n-1;
return res;
}
int main()
{
int i,j,k,t;
int n,m;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
int ans=0;
for(i=1;i*i<=n;i++){
if(n%i==0){
if(i>=m)ans+=oula(n/i);
if(n/i>=m&&i!=n/i)ans+=oula(n/(n/i));//注意平方根不能重复算
}
}
printf("%d\n",ans);
}
return 0;
}