问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。
输入格式
输入包含两个正整数,K和L。
输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;
对于50%的数据,K <= 16, L <= 10;
对于100%的数据,1 <= K,L <= 100。
脑子抽了,放着简单暴力的循环不用去写数位DP(超过10进制用不了)。。。
#include <bits/stdc++.h>
using namespace std;
#define MAX 5005
#define MOD 1000000007
typedef long long LL;
LL dp[105][105];//dp[i][j]记录长度为i,当前位为j的好数个数
int a[105];
int K,L;
/**
LL dfs(int pos,int pre,bool limit)
{
if(pos==-1)return 1;
if(!limit&&dp[pos]!=-1)return dp[pos]%MOD;
int up=limit?a[pos]:(K-1);
LL ans=0;
for(int i=0; i<=up; i++)
{
if(i==0&&pos==L-1)continue;
if((i==pre-1||i==pre+1)&&pre!=-1)continue;
ans=(ans+dfs(pos-1,i,limit&&i==a[pos]))%MOD;
}
if(!limit)dp[pos]=ans%MOD;
return ans;
}
LL solve(LL x)
{
int pos=0;
while(x)
{
a[pos++]=K-1;
x--;
}
//cout<<pos<<endl;
return dfs(pos-1,-1,1)%MOD;
}
**/
int main()
{
scanf("%d%d",&K,&L);
if(L==1)cout<<K-1<<endl;
else
{
int i,j,k;
LL ans=0;
memset(dp,0,sizeof(dp));
//cout<<solve(L)%MOD<<endl;
for(i=0;i<K;i++)
dp[1][i]=1;
for(i=2;i<=L;i++){
for(j=0;j<K;j++){
for(k=0;k<K;k++){
if(j-k==1||j-k==-1)continue;
dp[i][j]=(dp[i][j]+dp[i-1][k])%MOD;
}
}
}
for(i=1;i<K;i++){
ans=(ans+dp[L][i])%MOD;
}
cout<<ans%MOD<<endl;
}
return 0;
}