K好数(简单DP)

问题描述

如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。

输入格式

输入包含两个正整数,K和L。

输出格式

输出一个整数,表示答案对1000000007取模后的值。

样例输入

4 2

样例输出

7

数据规模与约定

对于30%的数据,KL <= 106;

对于50%的数据,K <= 16, L <= 10;

对于100%的数据,1 <= K,L <= 100。

脑子抽了,放着简单暴力的循环不用去写数位DP(超过10进制用不了)。。。

#include <bits/stdc++.h>
using namespace std;
#define MAX 5005
#define MOD 1000000007
typedef long long LL;
LL dp[105][105];//dp[i][j]记录长度为i,当前位为j的好数个数
int a[105];
int K,L;
/**
LL dfs(int pos,int pre,bool limit)
{
    if(pos==-1)return 1;
    if(!limit&&dp[pos]!=-1)return dp[pos]%MOD;
    int up=limit?a[pos]:(K-1);
    LL ans=0;
    for(int i=0; i<=up; i++)
    {
        if(i==0&&pos==L-1)continue;
        if((i==pre-1||i==pre+1)&&pre!=-1)continue;
        ans=(ans+dfs(pos-1,i,limit&&i==a[pos]))%MOD;
    }
    if(!limit)dp[pos]=ans%MOD;
    return ans;
}
LL solve(LL x)
{
    int pos=0;
    while(x)
    {
        a[pos++]=K-1;
        x--;
    }
    //cout<<pos<<endl;
    return dfs(pos-1,-1,1)%MOD;
}
**/
int main()
{
    scanf("%d%d",&K,&L);
    if(L==1)cout<<K-1<<endl;
    else
    {
        int i,j,k;
        LL ans=0;
        memset(dp,0,sizeof(dp));
        //cout<<solve(L)%MOD<<endl;
        for(i=0;i<K;i++)
            dp[1][i]=1;
        for(i=2;i<=L;i++){
            for(j=0;j<K;j++){
                for(k=0;k<K;k++){
                    if(j-k==1||j-k==-1)continue;
                    dp[i][j]=(dp[i][j]+dp[i-1][k])%MOD;
                }
            }
        }
        for(i=1;i<K;i++){
           ans=(ans+dp[L][i])%MOD;
        }
        cout<<ans%MOD<<endl;
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值