- 博客(464)
- 资源 (1)
- 收藏
- 关注
原创 人工智能驱动下的可再生能源气象预测:构建绿色能源时代的新大脑
在能源数字化转型与气候变化风险双重驱动下,新能源行业迫切需要一种更智能、更灵活、更高精度的预测与管理机制。人工智能,正在成为新能源体系的“第二大脑”,为绿色能源带来真正的预测力与调度力。
2025-07-08 08:29:47
1090
原创 人工智能驱动下的气象数据智能化演进:从数值预报到认知型大模型
在数据大爆炸的今天,气象预测不仅要“准”,更要“快”“广”“细”“懂人”。人工智能的引入,不只是算法和计算力的堆叠,而是为整个气象系统注入了认知的可能性与智慧的灵魂。
2025-07-08 08:28:17
1183
原创 气候大模型的演化路径与产业落地展望:AI重构全球气候科学的新范式
气候大模型并非只是气象研究的“技术升级”,它正重构我们对地球系统的认知路径与干预方式。其发展不仅有助于实现更高精度的气候预测,更将推动绿色转型、灾害治理、国际气候协作等多重目标。
2025-07-07 15:40:56
842
原创 AI驱动的气候风险评估:方法体系与产业实践
气候风险评估正从“事后总结”走向“实时洞察”和“预先干预”,而人工智能技术,正是这场范式跃迁的中枢引擎。
2025-07-07 15:39:17
766
原创 云原生环境下部署大语言模型服务:以 DeepSeek 为例的实战教程
本文完整演示了从零开始在云原生环境中部署 DeepSeek 大语言模型的过程,包括:模型下载与加载;vLLM 推理服务启动;FastAPI 封装 API;Docker 打包与运行;性能优化与异常处理。通过这套方案,任何企业或开发者都可以在本地、安全、可控地运行自己的大语言模型服务,为后续接入文档问答、智能客服、企业知识库等应用打下坚实基础。模型 ≠ 能力,工程 ≠ 辅助。唯有两者结合,AI 才能真正落地。
2025-07-02 08:54:31
982
原创 从实验到生产:DeepSeek大模型工程化部署的关键步骤与风险控制
《DeepSeek大模型工程化部署实战指南》摘要:本文系统梳理了开源大模型DeepSeek从实验室到生产系统的工程化部署全流程。核心内容包括:1)部署思维转变,强调模型服务化的稳定性、性能、安全等工程要求;2)五大关键步骤:资源评估、接口设计、性能优化、容器化部署、可观测性建设;3)典型风险应对方案,如显存不足、上下文爆炸、响应阻塞等问题。文章特别指出,大模型部署需兼顾技术实现与安全合规,通过工程能力将模型参数转化为可用服务,才能真正释放AI生产力。
2025-06-27 17:16:39
1417
原创 打造高可用的大模型推理服务:基于 DeepSeek 的企业级部署实战
《企业级大模型推理服务构建实践》摘要:以DeepSeek模型为例,本文探讨了从基础部署到高可用服务的升级路径。针对模型体积大、推理延迟高、资源独占等挑战,提出五项核心能力建设方案:可用性、性能、弹性、监控性和安全性。通过vLLM/TGI优化、上下文控制、量化部署等技术手段,构建包含API网关、推理中间层和GPU资源池的分层架构。特别强调容器化部署、可观测体系搭建和安全防护策略,并给出从PoC到业务融合的完整实施流程。
2025-06-27 17:15:02
945
原创 编程语言的演进与未来:从工具到认知框架的转变
未来编程语言将不仅是程序员的写作工具,更是认知工具和思维模式的载体。开发者的重点将从“代码细节实现”转向“系统设计、协作与管理”,通过语言构建起复杂系统的高层认知模型。这要求程序员不仅精通语言语法,更需具备跨领域的知识整合能力,以及与人工智能协作的能力。编程语言的最终使命,是帮助人类更高效、更准确地表达复杂的思想和系统。它既是沟通机器的工具,也是连接人类思维的桥梁。
2025-06-26 17:22:35
816
原创 编程语言与认知科学:构建理解机器与人类共同语言的桥梁
方向表现可解释性增强错误提示更友好、结构更清晰多模态输入支持自然语言、图形、语音交互AI 协同优化语言结构更利于模型生成与修改领域适配性可构建定制 DSL,更贴合业务认知模型元语言化能力能动态描述和扩展自身语义(如宏系统)语言终将不再是“代码编写工具”,而是“认知与系统之间的桥梁”。让我们记住一句话:“你写的不是代码,而是你对系统的理解方式。
2025-06-26 17:21:53
1136
原创 现代编程语言设计的七大趋势:构建未来十年的开发底座
未来十年,我们不一定还需要“写很多代码”,但我们一定还需要“用语言建构系统”。这些语言可能是:类 Python 的语法;类 YAML 的声明;类 Prompt 的意图表达;类 DAG 的流程图;甚至是语音、图形、点击操作的“可视化语言”;真正强大的语言,不在于它多么优雅,而在于它能让你构建复杂系统并与 AI 协同工作。
2025-06-24 16:51:36
1120
原创 编程语言的边界正在模糊:从代码到意图的迁移
几十年来,编程语言是开发者与计算机沟通的主要桥梁。从 C 语言的指针,到 Python 的缩进,再到 TypeScript 的类型系统,我们一遍又一遍学习如何“更好地写代码”。但随着大语言模型(LLM)与人工智能的崛起,编程语言的角色发生了本质性变化:我们不再执着于“如何写代码”,而更关心“如何表达意图”。AI 可以代替我们写函数、生成接口、推理测试逻辑。未来的开发,是不是只需要描述意图?语言是否会消失?本文将围绕这个问题,从语言的功能演变、AI 的介入形式、语义表达的新形式三个维度进行探讨。
2025-06-24 16:49:10
605
原创 编程语言的设计之道:从底层控制到表达自由
一种语言的设计者,既是哲学家,也是工匠。每一门编程语言都是时代问题的技术回应。我们作为开发者,既要理解语言的“语法层”,更应思考其背后的“设计哲学”。掌握一门语言,不等于写好代码,而在于是否能用其思维方式解决问题、构建世界。
2025-06-23 14:21:59
713
原创 从语言到生态:编程语言在各行业的应用格局与未来演进
每一门语言都有其美学与力量,它们生于不同的历史背景,服务于不同的技术需求。语言的终极价值,并非成为“唯一”,而是恰到好处地承载我们对世界的抽象与实现。真正的技术高手,不止懂语法,而是能用语言表达清晰思维,驱动高效协作,实现业务价值。愿你在语言的世界中,既不迷信潮流,也不抗拒变革,找到最适合自己的技术表达方式。
2025-06-23 14:20:01
860
原创 编程语言的未来十年:新范式、新挑战与开发者的机遇
在过去几十年里,编程语言从汇编语言走向高级语言,从面向过程迈向面向对象,再到如今兴起的函数式、声明式、并发友好型语言。然而,2020 年之后,随着AI 编程、大模型辅助开发、WebAssembly、低代码平台、跨平台技术栈等概念兴起,编程语言迎来了前所未有的“融合化、智能化、低门槛化”时代。编程语言的未来,不止于语法与性能的演化,而是一次关于“人机协作逻辑”的深刻重塑。未来的开发者,不只是“代码工匠”,更是“语言生态的构建者”。
2025-06-20 12:54:24
722
原创 编程语言的演化与选择:技术浪潮中的理性决策
世界没有“最好的语言”,只有“最合适的语言”。语言之争永远不会停止,但优秀的开发者,应该超越语言本身,理解其背后的思想与范式。正如林纳斯·托瓦兹所说:愿每一位开发者都能在语言的世界中找到属于自己的那把钥匙,打开通向更高维度的技术之门。
2025-06-20 12:52:41
1331
原创 人工智能重塑医疗生态:从诊疗助手到健康守护者
人工智能并不会取代医生,但将成为医生最重要的伙伴:AI帮医生节省时间、减轻疲劳;AI提高诊断精准率与效率;AI推动医疗服务公平化、普惠化。真正有力量的AI医疗,不在于“取代人”,而在于帮助更多人获得更好的医疗照护。当AI与医学结合,科技就不再只是算力的象征,而成为生命的守护者。
2025-06-19 13:12:49
1085
原创 教育智能化:人工智能如何重塑未来学习方式?
人工智能并不会“替代教师”,但它一定会重新定义教师的角色。从讲解者转向指导者,从内容传递者转向激发者。教育的本质是“人与人的连接”,AI只是帮助连接得更深、更广、更高效。真正的未来教育,不是AI教孩子学会答题,而是教孩子与AI一起成为更好的人。
2025-06-19 13:11:21
871
原创 小模型崛起:轻量化人工智能的现实突破与未来走向
小模型”并非贬义词,通常指参数规模控制在数千万至数十亿量级,可本地运行、低资源消耗、部署灵活的人工智能模型。Phi-2(微软):13亿参数,支持强逻辑推理与数学能力;Mistral 7B:推理性能逼近LLaMA2-13B;Qwen-1.8B:阿里出品,适合中文场景下的本地部署;Gemma 2B:Google出品,专为边缘设备优化。大模型引领的是认知上限,小模型决定的是应用下限。后者让 AI 普及到更广泛的设备、行业与人群,真正实现“智能无处不在”。
2025-06-18 13:01:02
555
原创 多模态人工智能:通向通用智能的关键一步
多模态AI是指能够同时接收、理解和生成多种类型数据(如文本、图像、音频、视频、3D空间等)的人工智能系统。它的核心在于模态之间的联合建模与语义对齐,使模型能够跨模态进行推理与表达。我们可以把多模态AI看作是人类智能的缩影我们用眼睛观察世界(视觉输入);用耳朵聆听(听觉输入);用语言表达思想(语言生成);用身体行动改变世界(Agent执行)。当AI具备图文音视频的理解与生成能力,并能对环境做出自主响应,它就不再是“工具”,而是一个拥有认知与感知能力的“智能体”。
2025-06-18 13:00:17
418
原创 AI+产业:人工智能推动传统行业智能化转型的五大路径
人工智能正在从一项前沿技术,演化为一种基础能力,嵌入组织的方方面面。真正成功的企业不是“拥有AI工具”,而是“具备AI能力”的组织。未来的核心竞争力,不在于你是否用AI,而在于你是否能构建一个善用AI的人才团队、数据系统和决策体系。AI不改变行业,而是让领先者更领先、让掉队者更掉队。在AI这场浪潮中,你准备好做浪头,还是落水者?
2025-06-16 12:32:59
765
原创 人工智能赋能千行百业:从模型能力到场景落地的路径解析
人工智能的故事早已不再只是“科技圈”的事。它已经成为每一位产品经理、工程师、企业高管、乃至公务员、医生、教师都必须面对的能力挑战。从模型能力的跃迁,到行业场景的落地,AI正悄然改变世界运行的方式。在这场变革中:先行者将收获红利;后行者将面临重构;抗拒者将逐渐被淘汰。正如电力之于工业、互联网之于信息社会,AI之于未来社会,将是不可或缺的操作系统。你准备好了吗?
2025-06-16 12:32:17
827
原创 通用人工智能离我们还有多远?从认知模型到大模型的深度解析
AGI指的是能够像人类一样理解、学习、推理、迁移并适应多种复杂任务的人工智能系统。与我们今天使用的“窄人工智能”(Narrow AI)不同,AGI具有:多任务通用性(不是只会围棋或翻译)可持续学习能力(一次学习,终身受用)推理与抽象能力(不仅给出答案,还能说明“为什么”)自我感知与反思能力(例如元学习、策略优化)目前的 GPT-4、Claude 3、Gemini、Mistral 等大模型虽已表现出令人惊艳的能力,但距离真正的 AGI,仍有若干关键鸿沟。
2025-06-12 13:45:54
900
原创 边缘智能的崛起:人工智能在“云—边—端”协同中的新突破
边缘智能(Edge Intelligence)是指将人工智能算法集成至边缘计算平台或终端设备中,使其具备本地智能感知、分析、决策与执行的能力。边缘计算:靠近数据源的计算模式;边缘智能:在边缘设备上运行AI算法;典型设备:智能摄像头、边缘服务器、工业控制器、可穿戴设备等。边缘智能并非要取代云计算,而是强调与云平台的互补与协同。边缘智能不仅是技术演进的产物,更是AI走向“泛在化”时代的战略支点。它打破了AI只能集中部署的边界,使人工智能能力真正渗透到每一处真实物理世界中。
2025-06-12 13:44:22
646
原创 人工智能新范式:从大模型到智能体的演化逻辑
属性含义感知能力能接收外部环境信息(如文本、图像、传感器数据)决策能力能根据状态制定目标或选择行动方案行动能力能调用工具或执行操作影响环境记忆与学习能持续积累经验并改进行为策略这意味着 Agent 是一种持续运行、交互式、目标导向的智能个体,而不是一次性生成文本的工具。我们正处于一个前所未有的技术临界点。人工智能从“任务助手”走向“智能个体”,不再是机械的代码堆栈,而是带有意图与策略的数字生命。这要求我们用新的视角思考:如何设计与AI共存的协同社会?如何赋予AI以理性、道德和边界?
2025-06-11 14:52:16
900
原创 数智融合时代的气候数据革命:从观测到决策的价值跃迁(文末附23种数据下载链接)
气候数据曾长期被视作“基础数据”,其主要服务于天气预报、灾害监测和农事指导等传统领域。然而,随着气候变化的加剧与数字智能技术的深度融合,气候数据的价值正被重新定义和释放。今天,气候数据不仅仅属于气象部门,而正逐步走向更广阔的产业边界:能源公司利用高精度风场数据优化风电调度;航空与物流企业依靠精细化预报调整飞行与运输路径;金融保险机构将极端气候事件预测用于风险定价;城市管理者通过智能预警系统提升极端天气响应效率。✅ 结论:气候数据已从“预报支撑”跃升为“决策引擎”,其价值链正在重构。
2025-06-11 10:33:29
1531
原创 人工智能与大数据融合发展:新一代智能系统的演进路径
AI 和大数据的融合,不再是简单的技术整合,而是重新定义了产业运行的基础逻辑。未来十年,数字世界的竞争,不再是“谁拥有更多数据”或“谁掌握更强算法”,而是:谁能将“数据→算法→价值”形成稳定、可控、自动演进的闭环系统;谁能构建“智能涌现”的组织架构、人才机制与平台工具。智能时代,不是拥有AI的企业最强,而是能够让AI自然融入业务流程、持续学习成长的企业最强。
2025-06-10 11:29:54
1158
原创 人工智能重塑产业的力量:技术演进、落地路径与典型案例剖析
人工智能并非万能解决方案,它无法替代行业经验与管理智慧。但它提供了改变规则、重构价值链的“第二增长曲线”。AI 产业化的真正门槛,不在于技术本身,而在于:能否真正理解业务流程的痛点;能否用 AI 技术构建新范式而非旧流程的修补;能否打造人才、组织、流程、平台协同发展的智能系统。未来的企业,不是“使用 AI 的企业”,而是“以 AI 为中心设计出来的企业”。
2025-06-10 11:28:51
1013
原创 人工智能新纪元:技术跃迁、行业变革与未来挑战
人工智能是一种工具,它可以辅助医生治病、协助学生学习、帮助企业提升效率。但它也是一面镜子,映射出我们对知识、权力、道德的理解与投射。我们既需要掌握 AI 技术的能力,也必须承担起引导 AI 向善的责任。AI 的未来不只是技术决定的,更是人类共同愿景塑造的。在这个智能时代,每一个人都不应只是“使用者”,而应成为 AI 时代的塑造者守护者与见证者。
2025-06-09 16:30:18
842
原创 云原生时代的系统设计:架构转型的战略支点
云原生计算基金会(CNCF)对“云原生”的定义为:可扩展性(Scalable)动态环境(Dynamic Environments)现代基础设施(Modern Infrastructure)自动化与声明式(Declarative Automation)云原生不是简单的技术选型,而是一种系统设计哲学,它强调的是:面向变化而生;拥抱复杂而治;自动化驱动效率;可观测支撑信任;安全性内建架构。对于任何希望在数字时代长期生存与发展的企业而言,云原生能力就是新的核心竞争力。
2025-06-09 16:27:56
870
原创 大数据架构设计与平台选型实践指南:从零搭建数据驱动能力体系
大数据平台建设是一项系统工程,既要技术选型精准,又要架构设计前瞻,更需与业务深度融合。在竞争日趋激烈的今天,拥有一个稳定、智能、开放的大数据架构体系,意味着在数字化赛道中拥有先发优势。唯有构建具备业务闭环能力的数据平台,企业才能真正释放数据价值、实现从“知”到“行”的跃迁。
2025-06-08 19:40:10
955
原创 大数据赋能行业智能化升级:从数据价值到战略落地的全景透视
大数据不是工具,而是战略。它连接企业内部的数据资产与外部的环境信号,使得组织能够真正具备“感知-思考-行动”的智能闭环。智能化不是终点,而是以数据为核心资产、以洞察为能力底座、以决策为业务武器的“数字化胜任力”的体现。未来的企业将不再简单追求数据量的积累,而是在“数据价值实现能力”上展开真正的竞争。
2025-06-08 19:37:49
970
原创 构建云原生安全治理体系:挑战、策略与实践路径
云原生安全不是在传统安全能力的基础上“贴补丁”,而是以平台工程为基础,融合开发流程、基础设施与运维体系,进行整体性设计和执行。未来,随着多云、多集群、边缘计算的广泛落地,云原生安全治理的难度将持续上升。但只要我们构建起“平台化、安全即服务”的能力体系,将安全能力标准化、模块化、可复用化,就能让安全不再成为业务创新的阻力,而成为业务韧性的保障。
2025-06-05 16:45:10
1225
原创 云原生 DevOps 实践路线:构建敏捷、高效、可观测的交付体系
云原生 DevOps 是一次范式的重构,它让软件交付流程更加自动化、可观测、可治理。但 DevOps 本质上仍是企业工程效率优化的手段,最终目的是加快业务响应速度、提升系统稳定性、降低交付成本。未来,随着 AI、边缘计算、Wasm 等新技术融入云原生生态,DevOps 的边界将持续拓展。而构建一个“产品级平台”化 DevOps 能力体系,将是每一个技术团队不得不面临的挑战。
2025-06-05 16:43:41
1465
原创 云原生与DevOps融合实践:加速企业数字化转型的加速器
云原生(Cloud Native)是指利用云计算提供的弹性和分布式能力来构建应用的一种架构模式,主要包括:容器化(Containerization)微服务(Microservices)动态编排(如 Kubernetes)服务网格(Service Mesh)可观测性(Observability)系统松耦合、可弹性伸缩、快速部署、自动恢复。某大型金融企业,原有系统基于传统的虚拟机和人工发布流程,存在:上线周期长(每次发布需1周以上)运维负担重(版本不一致、依赖复杂)
2025-05-29 08:21:06
1590
原创 云原生架构中的弹性与容错设计:从理念到企业落地实践
云原生(Cloud Native)作为现代企业 IT 架构的核心理念,其背后的动因并不是“零故障”,而是“在故障不可避免的前提下依然保持业务连续性在容器、微服务、Kubernetes 等云原生技术驱动下,系统变得更灵活、更可扩展,但也更加复杂和脆弱。一个服务挂掉可能不是灾难,但如果它的“熔断、降级、重试、容灾”机制没有设计好,整个业务链条都可能被拖垮。**弹性(Resilience)与容错性(Fault Tolerance)**因此成为云原生架构不可或缺的核心设计原则。
2025-05-29 08:20:12
694
原创 企业级云原生平台的演进路径与治理框架
技术红利来自架构标准化,效率红利来自组织协同没有治理的“平台化”会迅速演变为“新一轮的混乱”平台成功的关键不是K8s上线,而是“服务即产品”的思维转变真正成功的企业平台化建设,一定不是“运维人员的自动化工具”,而是“企业能力的战略承载体”。云原生是现代企业的“数字底座”,其成功与否,将直接决定企业未来三到五年的竞争力。从技术堆叠,到能力整合;从平台部署,到组织治理。云原生之路,不止技术,更关组织、文化与战略认知。
2025-05-26 14:01:25
721
原创 云原生技术在企业数字化转型中的战略价值与实践路径
企业导入云原生,不应止步于部署K8s集群,更应通过平台化、治理化、智能化演进,构建“面向未来”的数字基础设施。技术的目标不是炫技,而是以更小的代价、更快的速度、更稳的支撑,为企业创造持续、复利型价值。只有“用好云、管好云、营好云”,才能真正完成从数字化建设到数字化运营的战略飞跃。
2025-05-26 13:59:17
999
原创 云原生架构演进中的配置管理体系构建与实践
随着云原生架构的普及,微服务、容器化和 DevOps 成为现代应用架构的标准形态。配置数据(Configuration)。配置项贯穿整个应用生命周期:启动参数、数据库连接、第三方服务地址灰度发布开关、缓存参数、服务降级阈值业务逻辑规则、特性开关、国际化资源传统配置管理依赖静态文件(如.conf)或环境变量,不具备动态性、可观测性、安全性和审计能力。在云原生环境中,这种做法已经难以满足大规模分布式系统的灵活性与稳定性需求。
2025-05-09 12:35:29
836
原创 云原生架构下的服务治理体系全景解析
微服务架构带来灵活性与扩展性,但也引入了大量服务间协作复杂性。治理体系的缺失,会让系统陷入:服务调用混乱故障传播无感知灰度发布无法验证安全策略形同虚设因此,构建一套适配云原生环境的服务治理体系,不仅是技术升级的配套手段,更是系统稳定性与业务连续性的保障。
2025-05-09 12:33:11
1009
1961-2022年中国地面2400+观测站点日尺度基本观测资料(V3.0数据集)-降水+平均、最高、最低温度
2025-06-18
2005-2024年我国31省乡镇数量-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-06-16
我国341座城市人类需求指数HMDI数据集(2000+2010+2020年)-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-06-24
截至2023年长三角8462家养老机构空间分布及详细信息数据集-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-06-24
中国2960所大学校徽图片-200px
2025-06-26
中国132所双一流大学超清版校徽-2048px
2025-06-26
基于大语言模型的多类型推理问答数据集json格式-超20000条数据
2025-06-26
雄安新区植物名录(共641条)数据集
2025-06-27
山东长岛国家级自然保护区1984-2023年372种鸟类名录(21目71科193属)数据集
2025-06-27
2024年湖南省2288种野生木本植物名录(117科482属)与地理分布数据集
2025-06-27
中国湖泊面积与数量变化数据集(1960s-2020)-可编辑mxd文件+标准shape文件+标准成图TIF
2025-07-01
青藏高原8个农业发展总体区划-可编辑mxd文件+标准shape文件+标准成图TIF
2025-07-01
鄱阳湖流域边界及地形-可编辑mxd文件+标准shape文件+标准成图TIF
2025-07-03
1970-2022年中国2781个省级国家级开发区数据集-shp版本+Excel版本+可编辑mxd文件+标准成图TIF
2025-07-07
2024年京津冀地区748个工业热源空间分布-可编辑mxd文件+标准shp文件+标准成图TIF
2025-06-26
全球24个时区划分shp文件-对应不同地理区域
2025-06-28
青藏高原12个流域边界【汇总+单个】数据集-可编辑mxd文件+标准shp文件+标准成图TIF
2025-06-30
2024年湖南省5465种野生种子植物名录(194科1273属)与地理分布数据集
2025-06-27
基于大语言模型微调的汽车维护与保养知识数据集-JSON格式
2025-06-26
黑河流域灌区分布shp文件及干支渠分布图TIF文件
2025-06-23
湖南1m空间分辨率土地覆盖数据-TIF格式+mxd文件
2025-07-19
湖北1m空间分辨率土地覆盖数据-TIF格式+mxd文件
2025-07-18
库布其沙漠2000-2020年边界演变-TIF版本
2025-07-18
河南1m空间分辨率土地覆盖数据-TIF格式+mxd文件
2025-07-18
泾河流域【矢量边界+高程+水系+覆盖省市县】-可编辑mxd文件+标准shape文件+标准成图TIF
2025-07-18
渭河流域【矢量边界+高程+水系+覆盖省市县】-可编辑mxd文件+标准shape文件+标准成图TIF
2025-07-18
重庆1m空间分辨率土地覆盖数据-TIF格式+mxd文件
2025-07-17
海南1m空间分辨率土地覆盖数据-TIF格式+mxd文件
2025-07-17
三江源流域矢量边界-可编辑mxd文件+标准shp文件+标准成图TIF
2025-07-17
中国【官话片区+汉语方言片区+少数民族方言片区】数据-Excel版本-附带详细省市县+语言分类等
2025-07-17
CN05.1全国【日和月尺度】2023年【温度(Tm/Tmax/Tmin)+降水(pre)+日照时数(ssd)+相对湿度(Rhu)+风速(Win)】格点观测资料-025x025
2025-07-14
2024年最新版全国(含TW)行政区划代码743298个-Excel版本
2025-07-16
全球主要流域边界shp文件
2025-07-16
上海1m空间分辨率土地覆盖数据-TIF格式+mxd文件
2025-07-16
天津1m空间分辨率土地覆盖数据-TIF格式+mxd文件
2025-07-16
北京1m空间分辨率土地覆盖数据-TIF格式+mxd文件
2025-07-16
2014-2024年中国367个城市每年空气质量优良天数数据集-Excel版本
2025-07-08
海河流域一(3个)二(9个)三(18个)级子流域-可编辑mxd文件+标准shape文件+标准成图TIF
2025-07-08
全球1473条主要河流分布数据-可编辑mxd文件+标准shp文件+标准成图TIF
2025-07-07
深度学习模型的可解释性
2024-11-05
TA创建的收藏夹 TA关注的收藏夹
TA关注的人