机器学习实战之KNN实现mnist手写数字分类

本文详细介绍了如何手动实现KNN算法并应用于MNIST手写数字识别。通过数据集展示、分类器构建、数据转化以及调用机器学习库,深入理解KNN算法的工作原理。

在讲述完机器学习算法之后,本小节将会带领大家一步一步根据算法原理来自己实现算法设计,而不是直接调用现有的机器学习算法库,通过该阶段的学习与训练,相信你会对算法的原理有更深入的一个认识,对机器学习的认识也会更上一层楼,真正理解算法的工作原理。

目录

一、数据集展示与说明

二、构建分类器

 三、数据转化

四、调用机器学习算法库


 

在学习了KNN算法原理之后,今天的内容——mnist手写数字识别案例是对KNN算法理解的一个升华,是KNN算法原理理解的延续,这也是为了自己能更熟练的掌握k-NN算法。

一、数据集展示与说明

数据集说明:整个数据集大约2000个训练样本和1000个测试样本,训练样本是trainingDigits,测试样本是testDigits。文本文件中是0~9的数字,是用二值图表示出来的,如图。我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能。

数据集中主要有两部分内容,data和label,分别表示数据和数据对应的标签,该数据集中有70000条数据,每条数据有784个特征。每一条数据都是一副28x28的图片,784个特征就是784个像素灰度值(0-255),通过画图展示如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

且行且安~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值