数据挖掘流程

本文详细介绍了数据挖掘的全过程,从数据集的选择与构造,到数据预处理、数据转换、数据建模,再到结果分析和改进。数据预处理包括数据清理、集成、归约和变换,确保数据质量和一致性。建模阶段涉及多种模型选择与参数调优,最后通过评估模型性能,如错误率、精度、F1度量等,不断改进模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.数据挖掘流程


2.数据集选取与构造

根据任务的目的,选择数据集(公开现有),或者从实际中构造自己需要的数据,如通信数据一般采用抓包解析等采集方式,此外还有大量的社交、图像、音视频等。

3.数据预处理:

 提高数据质量(准确性、完整性和一致性),包括数据清理、数据集成、数据规约和数据变换方法。 


(1)数据清理

忽略元祖、人工填写缺失值、使用属性的中心度量填充、给定同一类所有样本的属性均值或中位数填充、最可能的值填充

(2)数据集成

实体识别、冗余和相关分析(卡方检验,相关系数,协方差等)

(3)数据归约

维规约(小波变换和主成分分析,最常用)、数量规约(较小的数据替代原始数据)、数据压缩(有损无损两种,尤其对于图像视频等多媒体常用)

(4)数据变换和数据离散化

数据变换:光滑,属性构造,聚集,规范化,离散化和概念分层。


4.数据转换<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值