1.数据挖掘流程
2.数据集选取与构造
根据任务的目的,选择数据集(公开现有),或者从实际中构造自己需要的数据,如通信数据一般采用抓包解析等采集方式,此外还有大量的社交、图像、音视频等。
3.数据预处理:
提高数据质量(准确性、完整性和一致性),包括数据清理、数据集成、数据规约和数据变换方法。
(1)数据清理
忽略元祖、人工填写缺失值、使用属性的中心度量填充、给定同一类所有样本的属性均值或中位数填充、最可能的值填充
(2)数据集成
实体识别、冗余和相关分析(卡方检验,相关系数,协方差等)
(3)数据归约
维规约(小波变换和主成分分析,最常用)、数量规约(较小的数据替代原始数据)、数据压缩(有损无损两种,尤其对于图像视频等多媒体常用)
(4)数据变换和数据离散化
数据变换:光滑,属性构造,聚集,规范化,离散化和概念分层。