数据预处理之中心化(零均值化)与标准化(归一化)
目的:
通过中心化和标准化处理,最终得到均值为0,标准差为1的服从标准正态分布的数据。可以取消由于量纲不同、自身变异或者数值相差较大所引起的误差。
原理:
中心化(又叫零均值化):是指变量减去它的均值。其实就是一个平移的过程,平移后所有数据的中心是(0,0)。
标准化(又叫归一化): 是指数值减去均值,再除以标准差。
标准化(归一化)优点及其方法
标准化(归一化)两个优点:
1)归一化后加快了梯度下降求最优解的速度;
2)归一化有可能提高精度。
标准化(归一化)两种方法:
1)min-max标准化(Min-MaxNormalization)
也称为离差标准化,是对原始数据的线性变换,使结果值映射到 [0 - 1] 之间。转换函数如下:
X*=(X-Xmin)/(Xmax-Xmin);
其中max为样本数据的最大值,min为样本数据的最小值。这种方法有个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。
2)Z-score标准化(0-1标准化)方法
这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1。
转化函数为:X*=(X-mean)/std;