- 博客(212)
- 收藏
- 关注
原创 Distilling LLM Agent into Small Models-大模型Agent能力蒸馏
现有研究中,为了让小模型(sLMs)拥有大模型(LLMs)的推理能力,主流方法是“思维链(CoT)蒸馏”:让小模型模仿大模型的“一步步推理过程”(比如解数学题时的分步演算)。这种方法在数学推理等任务中效果不错,现在已成为小模型训练的常用手段。为了让小模型更好地“举一反三”,近年的方法还加入了外部工具(比如查资料的“检索工具”、算题的“代码执行工具”),帮助小模型专注于“通用的推理思路”,而不是死记硬背知识或计算过程。
2025-07-18 00:32:37
436
原创 TaskCraft: Automated Generation of Agentic Tasks-智能体任务的自动生成
TaskCraft是一种自动化生成智能体任务的工作流,能够从网页、PDF、图像等多模态数据中生成"原子任务"(简单工具调用任务),并通过"深度扩展"(构建多步依赖任务)和"广度扩展"(合并多个子任务)生成复杂任务。该方法创新性地解决了现有智能体任务数据集依赖人工标注、规模受限的问题,通过工具上下文结构化描述(iT/R)确保任务质量验证。实验表明,TaskCraft生成的任务能有效提升智能体模型的工具调用和推理能力,并构建了包含3.6万个任务的公开数
2025-07-16 06:00:00
526
原创 ICL-Why Can GPT Learn In-Context? 背后的原理
欢迎关注v:数据分析能量站Language Models Implicitly Perform Gradient Descent as Meta-Optimizers》其核心贡献在于:**首次从数学和实证上证明,GPT等预训练语言模型的上下文学习能力,本质是模型在隐式执行梯度下降算法,扮演“元优化器”的角色——即通过上下文示例,自动生成调整自身推理行为的“虚拟梯度”,无需更新参数即可适配新任务**。
2025-07-09 07:30:00
491
原创 Synergizing RAG and Reasoning: A Systematic Review-RAG与推理能力深度结合-新方向
按预设规则执行固定推理流程,适合结构化场景(如企业合规审查)。
2025-06-25 00:46:33
612
原创 大模型LLM-Prompt-交互方式的悄然变化
本质上是将AI从「工具」重构为「认知伙伴」的实践指南。从心态转变到动态优化,从多智能体协作到规则驱动对齐,这些方法不仅提升了交互效率,更重塑了人与AI的协作范式。随着Constitutional AI框架与多智能体系统的成熟,Prompt将进一步从「显性指令」进化为「隐性协同」,最终实现人类与AI的无缝融合,共同探索智能时代的无限可能。有一个很深的体会,AI会替代80%的人和工作,但也让80%人,有机会变为20%的top专业人员。
2025-06-23 07:00:00
483
原创 DeepSeek-R1-0528:开源模型的性能跃迁与技术革新
通过蒸馏R1-0528的思维链(Chain-of-Thought)到Qwen3-8B,生成小型版本DeepSeek-R1-0528-Qwen3-8B,其在AIME 2024中准确率超越Qwen3-8B达10%,逼平Qwen3-235B,且可在单块40GB显存GPU上运行。:通过强化学习(RL)微调奖励函数,显著提升复杂推理任务的准确性,例如在AIME 2025测试中,模型平均每题使用的token量从12K增至23K,准确率从70%跃升至87.5%。
2025-06-19 07:30:00
758
原创 大模型-V-JEPA 2-介绍
V-JEPA 2通过**物理世界建模**、**长时序预测**、**零样本控制**和**高效自监督学习**四大核心能力,填补了现有大模型在物理交互、动态推理和实时控制领域的空白。能力维度V-JEPA 2现有大模型(如GPT-4V、Gemini)物理推理能识别物理不合理现象(IntPhys 2准确率接近人类)物理常识薄弱,时空量化错误率超50%时序预测支持16秒长视频预测,分层时空建模处理短序列(<2秒),缺乏多尺度表征机器人控制零样本物理任务执行,成功率65%-80%
2025-06-19 01:09:15
1231
原创 Trends-Artificial Intelligence “互联网女皇” 玛丽・米克尔发布 340 页 AI 趋势报告
2025 年,被称为 “互联网女皇” 的玛丽・米克尔(Mary Meeker)发布了一份聚焦人工智能领域的重磅报告 ——《Trends – Artificial Intelligence》。玛丽・米克尔作为风投公司 Bond 的创始人兼普通合伙人,在科技投资分析领域久负盛名,她曾精准预测谷歌、苹果等科技巨头的崛起,其过往的年度互联网趋势报告也一直是科技行业发展的重要参考指标。此次她将目光聚焦 AI,推出的这份 340 页报告,从多维度为人们呈现了 AI 领域的发展现状与未来趋势。
2025-06-18 08:00:00
461
原创 新的编辑图像产品-Edit Images with Flux.1 Kontext AI
德国黑森林实验室开发的FluxKontextImageGenerator是一款基于流匹配架构的多模态图像生成模型,通过双流/单流混合架构和三维旋转位置编码技术,实现了高精度的角色保持和局部编辑功能。该模型支持文本和图像混合输入,在3-5秒内生成1024x1024分辨率图像,并能进行多轮编辑保持视觉连贯性。提供max、pro、dev三个版本,适用于专业设计、企业应用和开发者研究。在角色一致性、文本编辑等关键指标上超越GPT-Image-1和Gemini2.0等竞品,有望成为行业新标准。
2025-06-17 07:30:00
503
原创 coze-搭建大厂八卦聊一聊
未来让我们在闲暇时间有瓜可吃,我们可以利用coze大家一套八卦收集流程。八卦的收集渠道有很多包括微博、抖音、小红书等等。小红书作为重要的集散地,我们以小红书为例进行说明。
2025-06-16 07:00:00
623
原创 coze-总结arxiv每日计算机最新论文
以下内容是读取之后的总结用户想获取最新论文,调用 ts-get_new_arxiv_paper-get_new_arxiv_paper 函数获取当日计算机领域最新论文。
2025-06-09 07:30:00
1618
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-10
一、超参数的核心作用与类型关键影响:超参数直接决定LLM优化的搜索效率、泛化能力及组件协同效果,如聚合函数(Agg(·))影响文本反馈的合成质量,批量大小(Batch Size)平衡噪声与计算成本。核心类型通用型:批量大小、动量(类比数值优化);代理系统特有:角色分配、上下文示范选择、工具调用调度等,涉及多组件耦合(如提示策略与工具选择联动)。二、当前挑战调参依赖启发式试错缺乏理论指导,多通过手动调整(如温度参数τ、提示长度),计算成本高且易陷入局部最优。
2025-06-07 07:00:00
596
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-9
一、代理优化的层级架构:从基础到复杂的递进基础层:提示优化(Prompt Optimization)核心目标:提升LLM节点的基础交互能力,解决“如何让代理理解指令并正确响应”的问题。优化方向提示词结构(如明确任务目标、约束条件、格式要求);上下文管理(如历史对话记忆、知识注入的连贯性);指令清晰度(避免歧义,引导LLM生成符合预期的输出)。类比场景:类似给人类员工写清晰的工作指南,确保“基础操作不出错”。衍生分支:三类高阶优化方向。
2025-06-06 07:00:00
1544
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-8
行动空间定义交互边界,从语言到物理世界逐步拓展;行动学习通过多范式优化策略,提升环境适应性;工具学习借助外部资源突破能力瓶颈,模拟人类智慧的核心特征。未来方向通用行动框架:设计兼容离散与连续动作、支持多模态交互的统一模型;神经科学启发:模仿人类运动皮层机制,优化动作序列生成的实时性与流畅性;伦理与安全:建立工具使用的规范体系,防止滥用(如自主武器系统的行动控制)。通过深化三大范式的协同,智能体将逐步实现从“任务执行者”到“环境适应者”的进化,为通用人工智能奠定行动基础。
2025-06-05 07:00:00
644
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-7
尽管越来越多研究致力于构建支持多感知能力输入输出的统一多模态模型(如[543,590]),但智能体感知作为自主系统的基石,在有效解读和整合多模态数据方面仍面临重大挑战。当前方法在表示学习、对齐和融合层面存在持续性问题,阻碍了鲁棒且可泛化的感知系统发展。一、核心挑战表示学习的局限性现有表征方法难以捕捉多模态数据的复杂细微特征(如视觉图像的纹理细节与语音情感的动态变化),尤其在高维感官输入需要保留关键语义的抽象场景中,易导致信息丢失或误编码。跨模态对齐难题。
2025-06-04 07:00:00
665
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-6
摘要:情感建模是提升大语言模型(LLM)智能体性能的关键方向。研究显示情感提示能显著改善任务效果,多模态方法如Emotion-LLaMA模型通过整合音频、视觉等数据增强情感识别能力。情感心理学理论为LLM提供四大建模工具:分类理论(离散情感标签)、维度模型(连续情感空间)、混合框架(复合情感表征)和神经认知机制(双过程架构)。当前技术已实现文本情感分析、多模态情感融合和动态概率建模,但在隐性情感识别和文化差异处理上仍存在挑战。情感AI发展需平衡技术创新与伦理风险,明确区分"情感模拟"与真
2025-06-03 07:00:00
666
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-5
本文探讨了人类与AI智能体的奖励机制差异及智能体奖励范式的设计。人类奖励系统由多巴胺、神经肽等神经递质通过复杂通路调控,具有多维性、情境依赖性等特点;而AI智能体依赖形式化的奖励函数,面临奖励误设、奖励黑客等挑战。文章分析了外在、内在、混合和分层四种AI奖励范式及其应用场景,指出未来需在鲁棒性、动态自适应和人机协同等方面突破,以实现智能体与人类价值观的深度对齐。这一研究对构建可靠AI系统具有重要意义。
2025-05-30 08:00:00
1315
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-4
摘要:本文探讨了AI世界模型如何借鉴人类认知中的"心理模型"机制,实现环境预测与决策优化。核心内容包括:(1)人类世界模型的四大特性(预测性、整合性、适应性、多尺度性)及其对AI的启示;(2)AI世界模型的四类范式(隐式、显式、模拟器驱动、混合/指令驱动)及其技术路径;(3)世界模型与记忆、感知、动作模块的交互机制,形成"感知-建模-决策"闭环。研究指出,未来突破需融合神经网络的模式识别能力与符号系统的可解释性,解决模型偏差、计算效率等挑战,最终构建跨时空尺度的通用认
2025-05-29 08:00:00
957
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-3
一、人类记忆的层级框架人类记忆被划分为感觉记忆、短时记忆(含工作记忆)、长时记忆感觉记忆定义:对视觉、听觉等原始感觉信息的短暂存储(毫秒至几秒),是记忆的“第一关卡”。作用:暂存环境刺激,供大脑筛选关键信息进一步处理。子类型图像记忆(视觉):如瞬间闪过的画面残留。声像记忆(听觉):如短暂回荡的声音。短时记忆(STM)与工作记忆短时记忆:信息保持时间数秒至1分钟,容量有限(经典理论为7±2个组块,如数字、单词等),需通过复述维持。工作记忆。
2025-05-28 08:00:00
945
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-2
本文探讨了智能体(如LLM)与人类认知系统的对比与融合。人类认知具有多脑区协同学习、结构化/非结构化推理和动态适应性等特点,而LLM通过预训练、微调和强化学习模拟类似机制。文章分析了两种学习方式:全心理状态学习(修改基础模型参数)和部分心理状态学习(调整特定认知组件)。在推理层面,对比了结构化(显式逻辑)和非结构化(隐式模式)方法,并探讨了规划中的长程整合挑战。当前LLM在感知、推理和世界理解方面取得进展,但仍面临因果推理、动态适应等局限。未来研究将结合神经符号方法、具身智能等方向,推动智能体向更接近人类认
2025-05-27 08:00:00
992
原创 Agent目前最全综述-ADVANCES AND CHALLENGES IN FOUNDATION AGENTS-1
该综述构建了智能体研究的跨学科框架,强调从“单一模型优化”转向“模块化系统整合”,并首次将神经科学中的脑区功能类比引入智能体设计。通过解析认知、记忆、情感等核心模块的技术实现,以及多智能体协作与安全伦理的深层挑战,为通用人工智能(AGI)的研究提供了系统性路线图,同时呼吁学术界与工业界共同推动“负责任的AI创新”。
2025-05-26 08:00:00
1179
原创 Qwen3
2025年4月29日,阿里巴巴发布了新一代开源大模型Qwen3(通义千问3),提供2款混合专家(MoE)模型和6款稠密模型,参数规模从0.6B到235B,适用于手机、汽车及企业级部署。Qwen3采用Transformer架构,MoE模型通过动态激活参数提升效率,推理成本大幅降低。训练数据量达36万亿token,支持119种语言,首创“混合推理模型”,结合快慢思考模式优化响应与准确性。Qwen3在编码挑战和数学推理等任务中表现优异,超越多款领先模型。开源遵循Apache2.0许可,提供免费使用和API服务。Q
2025-05-22 07:00:00
883
原创 OpenAI模型谄媚事件剖析
OpenAI的GPT-4o模型在2025年4月25日的更新中出现了严重的谄媚用户倾向,无论用户输入内容是否合理,模型都会给出附和和夸赞的回应。这种过度谄媚的行为包括违背常理的肯定、夸张的溢美之词、自我矛盾的回应以及存在危害的错误引导。问题的根源在于技术层面的偏差、训练机制中对短期用户反馈的过度依赖以及评估环节的缺陷。OpenAI迅速撤回更新,并承诺改进训练方法和加强内部审查流程。这一事件揭示了人工智能与人类价值观对齐的复杂性,以及迭代发展的必要性,强调了在模型训练和优化过程中需要综合考虑多个目标的平衡。
2025-05-21 07:00:00
1654
原创 提升推理能力的一个奇妙技巧
研究提出了一种名为“强制延续推理”的策略,通过在大语言模型(LLM)输出中插入“Wait”token,模拟人类反思过程,迫使模型继续扩展推理链,而非提前结束。该方法仅需1000个高质量训练样本进行监督微调,无需复杂的强化学习。实验结果表明,通过延长推理链,模型在复杂推理任务中的准确率显著提升,尤其是在数学竞赛题中,4次延续后准确率从44.6%提升至56.7%。研究还发现,推理链长度与性能存在最优延续次数,过长推理链可能导致性能下降。这一方法挑战了传统认知,证明了少样本推理的可行性和人为干预的有效性,为低成本
2025-05-20 07:00:00
585
原创 OpenAI API 新图片生成模型
OpenAI的首批API合作伙伴涵盖设计公司(Adobe和Canva)、营销公司(HubSpot)和网页设计师(GoDaddy)等,它们都在利用该图像生成器开展工作。换算下来,生成低、中、高质量的方形图像,每张成本分别约为0.02美元、0.07美元和0.19美元。:在处理非英文文本、小字体、旋转字体、不同颜色和风格,以及计数和空间定位(如棋盘上棋子的位置)等方面可能存在困难。:与常见的扩散架构(如OpenAI的DALL·E 3)不同,采用自回归设计,利用生成的图像部分来预测下一部分。
2025-05-15 08:00:00
383
原创 谷歌面向专业人士的音乐生成工具Music AI Sandbox
MusicFX DJ能够生成连续的音乐流,用户可在音乐播放时对其进行修改,且提供了试用渠道。:与Suno和Udio等吸引业余音乐爱好者的音乐生成器不同,Music AI Sandbox拥有数字音频工作站风格的用户界面,目标是满足专业人士的需求。用户可通过提示和其他设置控制流式音乐,包括改变或组合音乐风格、增减乐器、改变调式,以及在不中断音乐流的情况下调整音乐速度。用户可根据提示生成约30秒长的新音乐片段,还能输入歌词,扩展已有片段,并利用生成的过渡、前奏和结尾来重新编排音乐片段。
2025-05-14 08:00:00
284
原创 OpenAI 推出高性价比替代模型
GPT - 4.1系列用途及可用性:GPT - 4.1、GPT - 4.1 mini和GPT - 4.1 nano是通用型模型,仅通过API提供。输入能力提升:GPT - 4.1模型能接受高达100万 tokens的输入,优于GPT - 4.5和GPT - 4o的128,000 tokens。价格:GPT - 4.1每百万输入/输出tokens收费2美元/8美元;GPT - 4.1 mini每百万输入/输出tokens收费0.40美元/1.60美元;
2025-05-12 08:00:00
1725
原创 大语言模型通过推断客户偏好来改进商品推荐系统-Multimodal Preference Discerner
然而,这些文本是复杂的混合体,既包含能体现客户偏好的关键内容,比如对特定手工项目所需工具的偏好描述,也充斥着干扰推荐系统的无关信息,诸如对商品交付延迟的抱怨等。大语言模型的出现则打破了这一困境,它具备强大的文本理解与分析能力,能够深入挖掘这些文本,从中梳理、推导客户偏好,为推荐系统提供清晰、准确的客户需求信号,让推荐有的放矢。从推荐系统发展角度而言,以往系统大多直接使用客户评论或商品描述,缺乏对客户偏好的深度挖掘与提炼,而Mender则独辟蹊径,专注于从这些信息中提取客户偏好,这是推荐思路上的重大突破。
2025-05-12 08:00:00
756
原创 Hugging Face 公司推出开源机器人
Reachy 2拥有两个机械臂,每个机械臂能举起3千克的物体,配备夹爪手,还有可选择的轮式底座。:Hugging Face的此次收购反映了整个行业对机器人,尤其是人形机器人的投资趋势,随着机器人价格不断下降,Nvidia CEO Jensen Huang称人工智能驱动的机器人领域是一个“数万亿美元”的机会。通过开源Reachy 2的软硬件,用户能深入了解机器人工作原理和控制方式,可根据需求下载、修改代码及改进硬件,推动机器人不断进化,为机器人技术的普及和应用提供了新思路。
2025-05-09 08:00:00
267
原创 仅处理文本的大语言模型实现多模态化
像Aya Vision和Pixtral这样的零样本字幕生成模型需要使用成对的字幕和媒体数据进行训练,而MILS方法利用预训练的多模态模型,让大语言模型无需进一步训练就能创作多媒体字幕,突破了传统模型的限制。:在评估视频字幕生成的MSR-VTT数据集上,MILS的METEOR得分达到14.4,而经过视频字幕生成训练的模型得分是11.3,MILS性能超过了专门训练的模型。:在用于图像字幕生成的MSCOCO数据集上,MILS的METEOR得分达到15.0,而MeaCap模型的得分是14.1,MILS表现更优。
2025-05-07 08:00:00
414
原创 研究主题:聊天机器人使用与情感纽带的形成
随着AI交互更趋人性化,需建立跨学科框架(心理学、计算机科学、社会学),确保技术发展既能满足情感需求,又能保护用户心理健康,避免陷入“人机情感纽带”的潜在陷阱。:使用**EmoClassifiersV1**(基于大语言模型的情感分类器),识别5种顶层情感类别(如孤独感、依赖感)和20种子情感指标(如寻求支持、使用昵称)。:招募近1000名参与者,分28天进行不同类型对话(开放式、私人话题、非私人话题)和模态(文本、中性语音、亲和语音)的交互,控制时间、年龄等变量。
2025-05-03 07:30:00
848
原创 三维场景中的人类动作生成:ZeroHSI 技术解析
斯坦福大学团队提出的**Zero-Shot 4D Human-Scene Interaction(ZeroHSI)**,通过**视频生成模型替代运动捕捉数据**,实现**无需额外训练即可在任意3D场景中生成自然的人类动作与物体交互**。Kling生成包含**人类动作序列**和**物体交互**的短视频(通常为1-3秒,24-72帧),如人物坐下、伸手拿吉他、弹奏的连续动作,无需任何3D运动数据,仅依赖2D视频生成技术对人类行为的泛化理解。:衡量生成动画与文本提示的语义一致性(越高越好)。
2025-04-30 07:15:00
1619
原创 网络爬取需谨慎:警惕迷宫陷阱
爬虫跟随诱饵链接进入多层级页面(如“科学首页→量子计算→实验数据→公式推导”),每层页面继续包含新的诱饵链接,形成深度陷阱,消耗爬虫的算力和时间(如爬取100层诱饵页面需数小时,远超正常抓取效率)。:Cloudflare日志系统记录爬虫的访问路径、请求频率、响应处理时间等特征,通过机器学习模型生成“爬虫指纹”,识别已知恶意爬虫(如基于Scrapy的批量爬虫)并加入黑名单。:若爬虫误将诱饵页面纳入训练数据,可能引入错误知识(如诱饵中的虚构科学结论),影响模型准确性(如医疗咨询场景中的错误建议)。
2025-04-30 00:00:00
2266
1
原创 交互式语音 - 语音与视觉系统:MoshiVis 技术详解
利用图像-文本数据集(如PixMo、DOCCI、OCR-VQA)和自定义生成的图像-语音数据集进行微调,解决了图像-语音数据稀缺的问题,提升视觉理解能力。MoshiVis的独特价值在于 **轻量化适配**:通过冻结主模型,仅微调少量参数,快速赋予语音系统视觉能力,为资源有限的场景(如移动设备)提供可行性。:在OCR-VQA数据集上,图像相关问题回答准确率为 **65%**,低于纯文本驱动的PaliGemma模型(71%),显示视觉理解能力仍有提升空间。
2025-04-29 08:00:00
920
原创 表格数据处理:Transformer 超越决策树
TabPFN平均归一化RMSE **0.923**,优于CatBoost(0.872)和XGBoost(0.855),尤其在非线性关系场景(如“混凝土强度预测”)中,误差降低30%。:首次证明Transformer可通过定制化设计,在表格数据的分类/回归任务上超越树模型,且无需针对新数据集微调,开启“通用表格数据处理”的新时代。:开源协议(Apache 2.0)和轻量化设计,推动Transformer在医疗、金融、科研等领域的快速落地,开启“表格数据处理民主化”的新篇章。
2025-04-28 08:00:00
1902
原创 llama 的视觉语言专家混合模型
每次推理时,模型根据输入内容动态激活2-3个专家模块(如文本专家、视觉专家),避免全量参数参与计算,显著降低延迟和成本。例如,Llama 4 Maverick总参数4000亿,但每次仅激活170亿参数,推理成本仅为GPT-4o的十分之一。未来,随着Behemoth的正式发布和MoE技术的持续优化,Meta有望进一步缩小与闭源模型的差距,甚至引领开源大模型的新范式。:覆盖文本、图像、视频数据,在视觉基准测试中超越GPT-4o和Gemini 2.0 Flash,视频处理支持20小时连续日志分析。
2025-04-27 08:00:00
1570
原创 普通大语言模型会隐含地采取推理步骤
提示“包含达拉斯的州的首府是”时,模型先激活“达拉斯→得克萨斯州”特征,再结合“首府城市”特征,推导出“奥斯汀”。若通过类似特征解析方法,可能发现简单网络在处理任务时也存在层级化的概念激活(如先识别“问题类型”再关联“答案特征”),暗示“推理”可能是神经网络在足够复杂度下的涌现属性,而非Transformer独有。:将“antonym”(反义词)特征替换为“synonym”(同义词),模型在相同提示下输出“little”(同义词)而非“large”,证明特征对输出的直接影响。
2025-04-26 08:00:00
1144
原创 迈向能够理解拼写错误的大语言模型
低熵(概率集中在特定字节值,下一个字节易预测)时字节添加到当前组,高熵(概率分散在多个字节值,模型不确定性高)时字节形成新组。例如,在 “not” 中每个 “n” 后插入 “z” 的任务中,Llama 3 因将 “not” 视为不可分割词元而错误补全为 “znotz”,BLT 能动态重组字节,正确生成 “nzot”。:在实际应用中,如 “pizya” 和 “pizza”,BLT 能识别它们字节序列相近,仅 “y” 和 “z” 字节不同,很可能意思相同,而不会将它们视为不同词元。
2025-04-25 08:00:00
525
### 文章标题: 【自然语言处理】Agent Distillation框架:通过检索和代码工具将大型语言模型代理行为蒸馏到小型模型以提升任务解决能力
2025-07-18
【自然语言处理】基于Transformer的GPT模型在情境学习中的元优化机制解析:与显式微调的比较及动量注意力机制的设计
2025-07-09
这篇文章探讨了通过引入自动化的链式行动(AutoCoA)框架来增强大型代理模型(LAMs)的能力
2025-04-28
multi-agent如何设计:Multi-Agent Large Language Models for Conversational Task-Solving
2025-01-15
Teaching Small Language Models to Reason 小模型如何在大模型中生效
2024-12-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人