【Python】torch.no_grad()函数详解和示例

文章介绍了torch.no_grad()的作用,它在PyTorch中用于在评估模型时禁用梯度计算,从而节省内存和提高运算速度。通过实例展示了在withtorch.no_grad()中执行操作后,grad属性将不会累积梯度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.no_grad() 是 PyTorch 中的一个上下文管理器,用于在进入该上下文时禁用梯度计算。这在你只关心评估模型,而不是训练模型时非常有用,因为它可以显著减少内存使用并加速计算。

当你在 torch.no_grad() 上下文管理器中执行张量操作时,PyTorch 不会为这些操作计算梯度。这意味着不会在 .grad 属性中累积梯度,并且操作会更快地执行。

使用torch.no_grad()

import torch

# 创建一个需要梯度的张量
x = torch.tensor([1.0], requires_grad=True)

# 使用 no_grad() 上下文管理器
with torch.no_grad():
    y = x * 2

    
y.backward()

print(x.grad)

输出:

RuntimeError                              Traceback (most recent call last
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木彳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值