现代数字信号处理课后作业【完结篇】

博客围绕各态历经平稳随机信号观测值,介绍用周期法和自相关法求功率谱估计值并验证一致性。详细给出两种方法的计算步骤及公式推导,最后提到用Matlab绘图验证二者功率谱图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


感谢大家的陪伴,学无止境。


1、设各态历经平稳随机信号的观测值x(n)=x(n)=x(n)={1,-1,2,-2;n=0~3};试用周期法和相关法求其功率谱估计值PN(w)P_N(w)PN(w),验证其一致性。

周期图法:
①先求信号频谱函数XN(ejw)=∑n=0N−1x(n)e−jwnX_N(e^{jw})=\sum\limits_{n=0}^{N-1}x(n)e^{-jwn}XN(ejw)=n=0N1x(n)ejwn
②再求功率谱密度PN(w)=1N∣XN(ejw)∣2P_N(w)=\dfrac{1}{N}|X_N(e^{jw})|^2PN(w)=N1XN(ejw)2

自相关法:
①首先在时域求序列自相关函数rN(m)=1NxN(m)∗xN∗(−m)=1N∑n=0N−1xN(n)xN(n−m)r_N(m)=\dfrac{1}{N}x_N(m)*x^*_N(-m)=\dfrac{1}{N}\sum\limits_{n=0}^{N-1}x_N(n)x_N(n-m)rN(m)=N1xN(m)xN(m)=N1n=0N1xN(n)xN(nm)
②再求其傅里叶变换得到功率谱密度PN(w)=∑m=1−NN−1rN(m)e−jwnP_N(w)=\sum\limits_{m=1-N}^{N-1}r_N(m)e^{-jwn}PN(w)=m=1NN1rN(m)ejwn

周期图估计法:

x4(n)={1,−1,2,−2}     N=4x_4(n)=\{1,-1,2,-2\} \ \ \ \ \ N=4x4(n)={1,1,2,2}     N=4

X4(ejw)=∑n=03x(n)e−jwn=1−e−jw+2e−j2w−2e−j3wX_4(e^{jw})=\sum\limits_{n=0}^{3}x(n)e^{-jwn}=1-e^{-jw}+2e^{-j2w}-2e^{-j3w}X4(ejw)=n=03x(n)ejwn=1ejw+2ej2w2ej3w

               =(1−cosw+2cos2w−2cos3w)+j(sinw−2sin2w+2sin3w)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =(1-cosw+2cos2w-2cos3w)+j(sinw-2sin2w+2sin3w)               =(1cosw+2cos2w2cos3w)+j(sinw2sin2w+2sin3w)

P4(w)=14[(1−cosw+2cos2w−2cos3w)2+(sinw−2sin2w+2sin3w)2]P_4(w)=\dfrac{1}{4}[(1-cosw+2cos2w-2cos3w)^2+(sinw-2sin2w+2sin3w)^2]P4(w)=41[(1cosw+2cos2w2cos3w)2+(sinw2sin2w+2sin3w)2]

通过积化和差:cosαcosβ+sinαsinβ=cos(α−β)通过积化和差:cos\alpha cos\beta+sin\alpha sin\beta=cos(\alpha-\beta)cosαcosβ+sinαsinβ=cos(αβ)

最后可化简得:P4(w)=14(−4cos3w+8cos2w−14cosw+10)最后可化简得:P_4(w)=\dfrac{1}{4}(-4cos3w+8cos2w-14cosw+10)P4(w)=41(4cos3w+8cos2w14cosw+10)

自相关估计法

由于x4(n)为实序列,所以x∗(−n)=x(−n)由于x_4(n)为实序列,所以x^*(-n)=x(-n)x4(n)x(n)=x(n)

r4(m)=x(m)∗x(−m)=14∑n=03x4(n)x4(n−m)r_4(m)=x(m)*x(-m)=\dfrac{1}{4}\sum\limits_{n=0}^{3}x_4(n)x_4(n-m)r4(m)=x(m)x(m)=41n=03x4(n)x4(nm)

r4(m)=14{−2,4,−7,10,−7,4,−2}    m=−3,−2,...,2,3r_4(m)=\dfrac{1}{4}\{-2,4,-7,10,-7,4,-2\}\ \ \ \ m=-3,-2,...,2,3r4(m)=41{2,4,7,10,7,4,2}    m=3,2,...,2,3

P4(w)=∑m=−33r4(m)e−jwmP_4(w)=\sum\limits_{m=-3}^{3}r_4(m)e^{-jwm}P4(w)=m=33r4(m)ejwm

            =14⋅(−2ej3w+4ej2w−7ejw+10−7e−jw+4e−j2w−2e−j3w)\ \ \ \ \ \ \ \ \ \ \ \ =\dfrac{1}{4}\cdot(-2e^{j3w}+4e^{j2w}-7e^{jw}+10-7e^{-jw}+4e^{-j2w}-2e^{-j3w})            =41(2ej3w+4ej2w7ejw+107ejw+4ej2w2ej3w)

            =14[−2(ej3w+e−j3w)+4(ej2w+e−j2w)−7(ejw+e−jw)+10]\ \ \ \ \ \ \ \ \ \ \ \ =\dfrac{1}{4}[-2(e^{j3w}+e^{-j3w})+4(e^{j2w}+e^{-j2w})-7(e^{jw}+e^{-jw})+10]            =41[2(ej3w+ej3w)+4(ej2w+ej2w)7(ejw+ejw)+10]

            =14(−4cos3w+8cos2w−14cosw+10)\ \ \ \ \ \ \ \ \ \ \ \ =\dfrac{1}{4}(-4cos3w+8cos2w-14cosw+10)            =41(4cos3w+8cos2w14cosw+10)

Matlab绘图验证二者功率谱图像:

在这里插入图片描述

Matlab代码:

clc;
clear;
close all;
 
xn=[1,-1,2,-2];
N=length(xn);
rm=xcorr(xn); %计算自相关

figure('name','功率谱估计');
B=xn;
A=1;
[H1,w]=freqz(B,A,'whole');
subplot(2,2,1);
plot(w/pi,1/N*(abs(H1)).^2,'r');
xlabel('\omega/\pi');ylabel('P_4(\omega)');grid on;title('周期图估计');

B=rm/N;
A=1;
[H2,w]=freqz(B,A,'whole');
subplot(2,2,2);
plot(w/pi,abs(H2),'b');
xlabel('\omega/\pi');ylabel('P_4(\omega)');grid on;title('自相关估计');

P1=0.25*((1-cos(w)+2*cos(2*w)-2*cos(3*w)).^2+(-sin(w)+2*sin(2*w)-2*sin(3*w)).^2); %周期图估计结果
P2=0.25*(-4*cos(3*w)+8*cos(2*w)-14*cos(w)+10); %自相关估计结果

subplot(2,2,3);plot(w/pi,P1,'r');
xlabel('\omega/\pi');ylabel('P_4(\omega)');grid on;title('周期图估计');
subplot(2,2,4);plot(w/pi,P2,'b');
xlabel('\omega/\pi');ylabel('P_4(\omega)');grid on;title('自相关估计');
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值