ceres::GradientProblem求解一般最小化问题

对于最小二乘问题,ceres::Problem可以应对。

对于一般的无约束最小化问题,使用 ceres::GradientProblem求解。
对应的cost function有

  • 继承 FirstOrderFunction,自定义factor,手写gradient和cost
  • 使用 AutoDiffFirstOrderFunction,只需要手写cost

这个问题的一般最小化解法如下

// ----------------------------- 手动求导 ----------------------------
class FirstOrderFunctionExample : public ceres::FirstOrderFunction {
   
   
 public:
  FirstOrderFunctionExample(const std::vector<double>& x_data,
                            const std::vector<double>& y_data)
      : x_data_(x_data), y_data_(y_data) {
   
   }
  virtual ~FirstOrderFunctionExample() = default;

  virtual bool Evaluate(const double* parameters, double* cost,
                        double* gradient) const {
   
   
    assert(parameters != nullptr);
    assert(cost != nullptr);
    assert(gradient != nullptr);

    const double a = parameters[0];
    const double b = parameters[1];
    const double c = parameters[2];

    cost[0] = 0;
    if (gradient != nullptr) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值