基于深度学习的群体目标流量分析

本文探讨了在多摄像机场景下估计进出人数的方法。主要依靠检测和跟踪技术,并使用粒子滤波或KCF等手段来跟踪行人轨迹。然而,该方法在人群密集区域存在局限性,尤其是在目标遮挡情况下。此外,还讨论了线性特征拟合和特征回归方法的不足。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

群体目标流量分析

大场景下(多摄像机 如正门、偏门)估计进出人数


已有方法

检测+跟踪

过程

首先检测人,之后用诸如粒子滤波、KCF等方式跟踪轨迹,判断了通过图像的虚拟线,进而决策

缺点

检测和跟踪都需要比较稳定,但是在一些密集场合检测是比较困难的,多目标的相互遮挡进行跟踪也是很困难的。

线性特征拟合、特征回归

缺点

特别依赖于模型的学习,当场景换了、人走的速度、密度跟数据库差别大的时候,有明显的精度下降。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值