python 3.9 验证三种常用 字典添加 方式的性能

该博客通过time模块测试了在Python中向字典添加元素的三种方式:直接赋值、update方法和setdefault方法的性能。在大量数据(1000000次)的测试环境下,发现直接赋值的平均性能最佳。测试结果显示,不同方法的运行时间存在差异,对于大规模数据处理,选择合适的方法能提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

再进行大量数据处理时,常需要使用字典,并且将数据载入字典中

常用的三种字典元素添加方式有

=

update

setdefault

再单个元素添加时,这三种方法在性能上几乎没有区别,但在大量数据下还是存在一些差别

*这次性能测试采用time模块,初始为空字典,添加元素相同,测试一种后将字典清零,并将五次测试平均

import time  #time模块

book_dict = {}  #字典

单个方式验证格式如下

n=0

while n < 1000000 :

    测试函数

    n+=1

# clear方法,删除所有

book_dict.clear()

代码总览

#字典添加测试
import time


book_dict = {}


start = time.time()
n=0
while n < 1000000 :
    book_dict["owner"] = "tyson" 
    n+=1


# clear方法,删除所有
book_dict.clear()
end = time.time()
print('用时 %6.3f' % (end - start))
start = time.time()
n=0
while n < 1000000 :
    
    book_dict.update({"owner" :"tyson"}) 
    n+=1


# clear方法,删除所有
book_dict.clear()
end = time.time()
print('用时 %6.3f' % (end - start))
start = time.time()

n=0
while n < 1000000 :

    book_dict.setdefault("owner", "tyson")
    n+=1


book_dict.clear()
end = time.time()
print('用时 %6.3f' % (end - start))


测试数据(在vscode下python默认编译器下)
12345平均
1.21563221.116613150.9650099280.9056057931.0183091161.044234037
1.9511389731.9192175871.5599498751.855957272.0414345261.865539646
1.6296265131.5825819971.4320979122.0653517251.7903306481.699997759

由此得出"="的性能最佳

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夜间出没的AGUI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值