基于机器视觉的几种标注方法

本文深入探讨了标注技术在人工智能领域的应用,包括2D框标注、多边形分割、线标注、点标注、3D立方体标注及语义分割等方法。强调了不同标注方式的选择依据及其对模型精度的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过合适的标注工具获得的训练数据可以得到更准确的模型

2D框标注 Bounding Box:标注人员在物体周围画一个框,一般用于物体分类

多边形分割标注:一般用来标注不规则的物体。(更准确, 相比2D框标注多边形分割标注在物体周围留下的空白会更少)

线标注: 也称道路标注,

点标注: 经常用于发现形状变化,(面部识别,手势识别等)

3D立方体标注: 经常用于计算车辆的深度和距离

语义分割标注:经常用于标注图片中的所有像素的实例中。

 

建议:

1.多边形应该尽量贴合被标注的物体,这样可以提供你的模型的速度和精确度

2.要规定框的最小高度和宽度

3. 对于运动的物体例如(自动驾驶汽车)用框或者3D立方体标注

6.对于静态的物体,用多变形或者线标注。

 

 

整理内容来自:https://blog.csdn.net/sparkapi/article/details/79679520

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值