Introduction
该论文应该是最早的讲GNN的论文。该论文的主要工作是实现一个转导(transduction)函数,把图GGG或者结点nnn映射到一个m维的嵌入向量:τ(G,n)∈Rm\tau(G,n) \in \mathbb{R}^mτ(G,n)∈Rm。
图领域应用可以分成两类:graph focused 和 node focused。
- graph focused: 函数把图映射成嵌入向量,然后对图进行分类或回归。
- node focused: 函数把图上结点映射成嵌入向量,对图上的结点进行分类或回归。
该论文的GNN可以处理循环、有向和无向图。
图可以是positional或者non-positional。他们的区别是,对于每个结点n,positional graphs 存在一个单射函数,为结点n的每个邻居分配一个不同的位置。
常用符号列表:
- G=(N,E)G=(N, E)G=(N,E): 图
- NNN: 图的所有结点集合
- EEE: 图的边的集合
- ne[n]ne[n]ne[n]: 结点n的所有邻居
- co[n]co[n]co[n]: 连接结点n的边
- ln∈RlN\mathbf{l}_n \in \mathbb{R}^{l_N}ln∈RlN: 结点n上的特征向量/信息,论文里称做结点的标签,是图数据给定的
- l(n1,n2)∈RlE\mathbf{l}_{(n_1, n_2)} \in \mathbb{R}^{l_E}l(n1,n2)∈RlE: 连接结点和的i边的特征向量/信息,论文称做边的标签,是图数据给定的
- L={ (Gi,ni,j,ti,j)∣Gi=(Ni,Ei);ni,j∈Ni;ti,j∈Rm,1≤i≤p,1≤j≤qi}\mathcal{L} = \{(G_i, n_{i,j}, \mathbf{t}_{i,j})| G_i = (N_i, E_i); n_{i,j} \in N_i; \mathbf{t}_{i,j}\in\mathbb{R}^m, 1 \le i \le p, 1 \le j \le q_i\}L={ (Gi,ni,j,ti,j)∣Gi=(N