辗转相除法--求最大公约数

本文介绍了使用递归实现的最大公约数(GCD)计算算法——欧几里得算法,并详细解释了其工作原理和时间复杂度。通过不断取余数的方式,最终找到两个整数的最大公约数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间复杂度O(log max(a,b))

设gcd(a,b)是计算自然数a和b的最大公约数的函数,a除b得到的商和余数分别是p和q。因为a=b*p+q,所以gcd(b,q),既可以整除a又整除b,也就整除gcd(a,b)。反之因为q=a-b*p,同理可以证明gcd(a,b)整除gcd(b,q)。因此可以知道gcd(a,b)=gcd(b,a%b)。不断这样进行下去,最终会得到gcd(a,b)=gcd(c,0)。0和c的最大公约数为c。

源代码如下:

int gcd(int a,int b){
    if(b==0) return a;
    return gcd(b,a%b);
} 

转载请标明出处。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值