iOSLabel详解学习_OC

本文详细介绍UILabel的各种配置选项,包括创建UILabel、设置文本内容、调整文本颜色及字体、设置对齐方式、行数限制等。此外还介绍了如何实现自动收缩、竖排文字显示、渐变字体效果、边框设置及背景圆角等高级功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下内容转自简书作者  J_Wheat

// 1、创建

CGRectrect =CGRectMake(100,100,100,100);

UILabel* label = [[UILabelalloc]initWithFrame:rect];

// 2、text设置和读取文本内容,默认为nil

label.text=@"文本信息";//设置内容

NSLog(@"%@",label.text);//读取内容

// 3、textColor设置文字颜色,默认为黑色

label.textColor= [UIColorredColor];

// 4、font设置字体大小,默认为17

label.font= [UIFontsystemFontOfSize:20];//一般方法

label.font= [UIFontboldSystemFontOfSize:20];//加粗方法

label.font= [UIFontfontWithName:@""size:16];//指定字体的方法

// 5、textAlignment设置标签文本对齐方式

label.textAlignment=NSTextAlignmentCenter;

/**其他的对齐方式

NSTextAlignmentLeft= 0,// Visually left aligned

NSTextAlignmentCenter= 1,// Visually centered

NSTextAlignmentRight= 2,// Visually right aligned

NSTextAlignmentRight= 1,// Visually right aligned

NSTextAlignmentCenter= 2,// Visually centered

NSTextAlignmentJustified = 3,// Fully-justified. The last line in a paragraph is natural-aligned.

NSTextAlignmentNatural= 4,// Indicates the default alignment for script

*/

// 6、numberOfLines标签最多显示行数,如果为0则表示多行

label.numberOfLines=2;

// 7、enabled只是决定了Label的绘制方式,将它设置为NO时文本变暗,表示没有激活,这是向她设置颜色值都是无效的。

label.enabled=NO;

// 8、highlighted是否高亮显示

label.highlighted=YES;

label.highlightedTextColor= [UIColororangeColor];//高亮显示时候的文本颜色

// 9、ShadowColor设置阴影颜色

[labelsetShadowColor:[UIColorblackColor]];

// 10、ShadowOffset设置阴影偏移量

[labelsetShadowOffset:CGSizeMake(-1, -1)];

// 11、baselineAdjustment如果==YES,控制文本基线的行为

label.baselineAdjustment=UIBaselineAdjustmentNone;

/*

UIBaselineAdjustmentAlignBaselines = 0, // default. used when shrinking text to position based on the original baseline默认,文本最上端与中线对齐。

UIBaselineAdjustmentAlignCenters, //文本中线与label中线对齐。

UIBaselineAdjustmentNone, //文本最低端与label中线对齐。

*/

// 12、Autoshrink是否自动收缩

/*

Fixed Font Size默认,如果label宽度小于文字长度时,文字大小不自动缩放

minimumScaleFactor设置最小收缩比例,如果Label宽度小于文字长度时,文字进行收缩,收缩超过比例后,停止收缩。

minimumFontSize设置最小收缩字号,如果label宽度小于文字长度时,文字字号减小,低于设定字号以后,不再减小。// 6.0以后不再使用了。

*/

label.minimumScaleFactor=0.5;

// 13、adjustsLetterSpacingToFitWidth改变字母之间的间距来适应Label大小

label.adjustsLetterSpacingToFitWidth=YES;// NS_DEPRECATED_IOS(6_0,7_0) __TVOS_PROHIBITED

// Non-functional.Hand tune by using NSKernAttributeName to affect tracking, or consider using the allowsDefaultTighteningForTruncation property.

// 14、lineBreakMode设置文字过长时的显示格式

label.lineBreakMode=NSLineBreakByCharWrapping;//以字符为显示单位显示,后面部分省略不显示

label.lineBreakMode=NSLineBreakByClipping;//剪切与文本宽度相同的内容长度,后半部分被删除。

label.lineBreakMode=NSLineBreakByTruncatingHead;//前面部分文字以……方式省略,显示尾部文字内容。

label.lineBreakMode=NSLineBreakByTruncatingMiddle;//中间的内容以……方式省略,显示头尾的文字内容。

label.lineBreakMode=NSLineBreakByTruncatingTail;//结尾部分的内容以……方式省略,显示头的文字内容。

label.lineBreakMode=NSLineBreakByWordWrapping;//以单词为显示单位显示,后面部分省略不显示。

// 15、adjustsFontSizeToFitWidth设置字体大小适应label宽度

label.adjustsFontSizeToFitWidth=YES;

// 16、attributedText设置标签属性文本

NSString* text =@"doubiqiu";

NSMutableAttributedString* textLabelStr = [[NSMutableAttributedStringalloc]initWithString:text];

[textLabelStrsetAttributes:@{NSForegroundColorAttributeName:[UIColorcyanColor],NSFontAttributeName:[UIFontsystemFontOfSize:17]}range:NSMakeRange(2,5)];

label.attributedText= textLabelStr;

// 17、竖排文字显示每个文字加一个换行符,这是最方便和简单的实现方式。

label.text=@"这\n个\n是\n竖\n排\n方\n向\n的\n显\n示";

label.numberOfLines= [label.textlength];

// 18、计算UILabel随字体多行后的高度

CGRectbounds =CGRectMake(0,0,200,300);

CGRectheightLabel = [labeltextRectForBounds:boundslimitedToNumberOfLines:3];//计算20行之后的Label的Frame

NSLog(@"%f",heightLabel.size.height);

// 19、UILabel根据字数多少自动实现适应高度

UILabel*msgLabel = [[UILabelalloc]

initWithFrame:CGRectMake(15,45,0,0)];

msgLabel.backgroundColor= [UIColorlightTextColor];

[msgLabelsetNumberOfLines:0];

msgLabel.lineBreakMode=UILineBreakModeWordWrap;

msgLabel.font= [UIFontfontWithName:@"Arial"size:12];

CGSizesize =CGSizeMake(290,1000);

msgLabel.text=@"获取到的deviceToken,我们可以通过webservice服务提交给.net应用程序,这里我简单处理,直接打印出来,拷贝到.net应用环境中使用。";

CGSizemsgSize = [msgLabel.textsizeWithFont:msgLabel.fontconstrainedToSize:size];

[msgLabelsetFrame:CGRectMake(15,150,290, msgSize.height)];

// 20、渐变字体Label

UIColor* titleColor = [UIColorcolorWithPatternImage:[UIImageimageNamed:@"btn.png"]];

NSString* title =@"Setting";

UILabel* titleLabel = [[UILabelalloc]initWithFrame:CGRectMake(100,200,80,44)];

titleLabel.textColor= titleColor;

titleLabel.text= title;

titleLabel.font= [UIFontboldSystemFontOfSize:20];

titleLabel.backgroundColor= [UIColorclearColor];

[self.viewaddSubview:titleLabel];

// 21、Label添加边框

titleLabel.layer.borderColor= [UIColorgrayColor].CGColor;

titleLabel.layer.borderWidth=2;

// 22、设置圆角

titleLabel.layer.cornerRadius=10;

titleLabel.backgroundColor= [UIColorcyanColor];

// 23、设置背景色圆角

titleLabel.clipsToBounds=YES;

[self.viewaddSubview:label];

[self.viewaddSubview:msgLabel];

// 24、设置Label 的倾斜度

label.transform = CGAffineTransformMakeRotation(-0.2);



文/J_Wheat(简书作者)
原文链接:http://www.jianshu.com/p/b294f385e07b
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。
### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值