反欺诈业务 Elasticsearch 分页与导出问题分析及解决方案

我是如何在反欺诈系统中使用 Redis 缓存客户年龄信息,提升导出性能的(实战经验总结)


一、背景

我在开发一个反欺诈系统的开户流水导出功能时,需要导出约 7w 条开户流水数据,每条数据包含客户号、开户日期,并且要补充客户年龄字段。

年龄字段来源于客户基本信息表,数据存储在 Elasticsearch 中,字段是客户出生日期。

开发初期,我们采用一次性查询客户号的方式,但上线后发现:

大部分年龄字段为空,数据异常!

排查发现:一次性传入 7w 个客户号查询 ES,由于 index.max_result_window 默认限制为 10000,只返回了前 1w 条数据。

于是我们做了如下优化:

  • 分批查询客户信息(每批 2000 条)
  • 使用 filter 查询,不记分
  • 只查询 custNo 和 birthDate 字段
  • 使用 Java 8 并行流加快查询速度
  • 引入 Redis 缓存客户出生日期信息,设置过期时间

二、我遇到的问题

1. 客户信息查询效率低

  • 每次导出都要重新查询 ES,性能差
  • 客户出生日期是静态数据,重复查询浪费资源

2. 一次性查询客户号数据不完整

  • 一次性传入 7w 个客户号,ES 默认最多返回 1w 条数据
  • 导致年龄字段缺失,数据异常

3. 未使用缓存,重复查询浪费资源

  • 客户出生日期基本不变,每次导出都重新查 ES,浪费资源

三、我是怎么做的?

我最终采用了如下方案进行优化:

优化项说明
分批查询每次查 2000 个客户号,规避 ES 的 max_result_window 限制
使用 filter 查询不记分,提升查询效率
只查 custNo 和 birthDate 字段减少数据传输量
使用 Java 8 并行流提升分批查询效率
引入 Redis 缓存客户出生日期减少重复查询
设置缓存过期时间(如 1 天)保证数据新鲜度

四、具体实现(Java + Elasticsearch + Redis)

✅ Redis 缓存工具类(使用 Spring Data Redis):

@Component
public class RedisCache {

    @Autowired
    private RedisTemplate<String, String> redisTemplate;

    // 设置缓存,带过期时间
    public void setWithExpire(String key, String value, long timeout, TimeUnit unit) {
        redisTemplate.opsForValue().set(key, value, timeout, unit);
    }

    // 获取缓存
    public String get(String key) {
        return redisTemplate.opsForValue().get(key);
    }

    // 批量获取缓存
    public List<String> multiGet(List<String> keys) {
        return redisTemplate.opsForValue().multiGet(keys);
    }
}

✅ 分批查询客户信息 + 并行流 + Redis 缓存:

@Service
public class CustomerInfoService {

    @Autowired
    private RestHighLevelClient esClient;

    @Autowired
    private RedisCache redisCache;

    private static final int BATCH_SIZE = 2000;
    private static final String CACHE_KEY_PREFIX = "cust_birthdate_";

    public Map<String, String> getCustomerBirthDates(List<String> customerNos) throws IOException {
        Map<String, String> result = new HashMap<>();

        // 去重客户号
        List<String> uniqueCustNos = customerNos.stream().distinct().collect(Collectors.toList());

        // 先查 Redis 缓存
        List<String> cacheKeys = uniqueCustNos.stream()
                .map(custNo -> CACHE_KEY_PREFIX + custNo)
                .collect(Collectors.toList());

        List<String> cachedValues = redisCache.multiGet(cacheKeys);
        Map<String, String> cachedMap = new HashMap<>();

        for (int i = 0; i < uniqueCustNos.size(); i++) {
            String custNo = uniqueCustNos.get(i);
            String cachedValue = cachedValues.get(i);
            if (cachedValue != null) {
                cachedMap.put(custNo, cachedValue);
            }
        }

        // 筛出未缓存的客户号
        List<String> notCached = uniqueCustNos.stream()
                .filter(custNo -> !cachedMap.containsKey(custNo))
                .collect(Collectors.toList());

        // 分批查询 ES
        List<List<String>> batches = Lists.partition(notCached, BATCH_SIZE);

        batches.parallelStream().forEach(batch -> {
            try {
                SearchRequest searchRequest = new SearchRequest("customer_info_index");
                SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();

                sourceBuilder.query(QueryBuilders.boolQuery()
                        .filter(QueryBuilders.termsQuery("custNo", batch)));

                sourceBuilder.fetchSource(new String[]{"custNo", "birthDate"}, null);
                sourceBuilder.size(batch.size());

                searchRequest.source(sourceBuilder);

                SearchResponse response = esClient.search(searchRequest, RequestOptions.DEFAULT);

                for (SearchHit hit : response.getHits()) {
                    Map<String, Object> source = hit.getSourceAsMap();
                    String custNo = source.get("custNo").toString();
                    String birthDate = source.get("birthDate").toString();

                    String cacheKey = CACHE_KEY_PREFIX + custNo;

                    // 放入结果 & 缓存
                    result.put(custNo, birthDate);
                    redisCache.setWithExpire(cacheKey, birthDate, 1, TimeUnit.DAYS);
                }

            } catch (IOException e) {
                e.printStackTrace();
            }
        });

        // 合并缓存和新查的数据
        result.putAll(cachedMap);

        return result;
    }
}

✅ 补充年龄字段逻辑:

public List<OpenAccountRecord> enrichWithAge(List<OpenAccountRecord> records) throws IOException {
    List<String> customerNos = records.stream()
            .map(OpenAccountRecord::getCustNo)
            .distinct()
            .collect(Collectors.toList());

    // 查询客户出生日期(优先 Redis 缓存,未命中则查 ES)
    Map<String, String> birthDateMap = getCustomerBirthDates(customerNos);

    // 补充年龄字段
    for (OpenAccountRecord record : records) {
        String custNo = record.getCustNo();
        String birthDate = birthDateMap.get(custNo);
        if (birthDate != null) {
            int age = calculateAge(birthDate);
            record.setAge(age);
        }
    }

    return records;
}

private int calculateAge(String birthDateStr) {
    LocalDate birthDate = LocalDate.parse(birthDateStr, DateTimeFormatter.ofPattern("yyyy-MM-dd"));
    LocalDate now = LocalDate.now();
    return now.getYear() - birthDate.getYear();
}

五、优化亮点总结

优化点说明
分批查询避免一次性查询超过 ES 限制
filter 查询不记分,提升性能
只查必要字段减少数据传输
并行流处理提升查询效率
Redis 缓存客户出生日期减少重复查询,支持分布式
设置缓存过期时间(1 天)保证数据新鲜度
构建映射表便于字段补充,代码结构清晰

六、遇到的难点与思考

🔍 难点一:分页没问题,导出才暴露问题

  • 分页只查 10 条客户号,ES 限制未触发
  • 导出时一次性查 7w 条客户号,才暴露数据截断问题

🔍 难点二:ES 默认限制不报错,只截断

  • ES 不会抛异常,只是返回前 1w 条数据
  • 容易造成数据丢失而不自知

🔍 难点三:缓存过期时间如何设置?

  • 客户出生日期不变,年龄每年更新一次
  • 设置缓存过期时间为 1 天,足够使用,且数据不会太旧

七、总结

这次优化让我深刻认识到:

缓存不是万能的,但合理使用缓存可以极大提升系统性能。

通过这次优化,我们解决了:

  • 年龄字段缺失问题
  • 数据完整性保障
  • 查询性能提升
  • 减少 ES 调用次数
  • 支持多节点部署下的缓存共享
  • 代码结构更清晰

如果你也在开发反欺诈、风控、数据报表等系统,遇到类似的 ES 分页、导出、数据关联问题,希望这篇文章能给你带来一些启发和参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值