线性回归建模的完整流程,重点解释关键概念和计算方法:
一、数据准备
样本数据:
x y
1 2
2 3
3 5
4 4
5 6
二、回归模型建立
模型公式:y=β0+β1x+ϵy = \beta_0 + \beta_1x + \epsilony=β0+β1x+ϵ
核心计算过程:
-
计算均值:
xˉ=1+2+3+4+55=3\bar{x} = \frac{1+2+3+4+5}{5} = 3xˉ=51+2+3+4+5=3
yˉ=2+3+5+4+65=4\bar{y} = \frac{2+3+5+4+6}{5} = 4yˉ=52+3+5+4+6=4 -
计算斜率(β1\beta_1β1):
分子:∑(xi−xˉ)(yi−yˉ)=(−2)(−2)+(−1)(−1)+(0)(1)+(1)(0)+(2)(2)=9\sum(x_i-\bar{x})(y_i-\bar{y}) = (-2)(-2) + (-1)(-1) + (0)(1) + (1)(0) + (2)(2) = 9∑(xi−xˉ)(yi−yˉ)=(−2)(−2)+(−1)(−1)+(0)(1)+(1)(0)+(2)(2)=9分母:∑(xi−xˉ)2=(−2)2+(−1)2+(0)2+(1)2+(2)2=10\sum(x_i-\bar{x})^2 = (-2)^2 + (-1)^2 + (0)^2 + (1)^2 + (2)^2 = 10∑(xi−xˉ)