
MATLAB学习笔记
个人MATLAB学习笔记
LetsonH
更多资讯请关注公众号“智影双全”
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【数学建模】线性规划模型MATLAB求解(最优化)
文章目录一、算法介绍二、适用问题三、算法总结1.可以转化为线性规划的问题四、应用场景举例1. 例1.1:2. 例1.2:五、MATLAB操作六、实际案例七、论文案例片段(待完善)线性规划模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五视频回顾一、算法介绍 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一一个重要分支一数学规划,而线性规划(Linear Programming简记LP)则是数学规划的一个原创 2020-08-05 11:34:49 · 46548 阅读 · 6 评论 -
【数学建模】多元回归分析模型(评价与决策)
文章目录一、算法介绍二、适用问题三、算法总结四、应用场景举例五、SPSS操作六、实际案例七、论文案例片段(待完善)多元回归分析模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五视频回顾一、算法介绍回归分析定义: 回归分析是一种统计学上分析数据的方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。回归分析思想: 回归分析的基本思想是:虽然自变量和因变量之间没有严格的、确定性的函数关系,但可以设法原创 2020-08-03 17:26:22 · 8070 阅读 · 2 评论 -
【数学建模】聚类分析(评价与决策)
文章目录一、算法介绍二、适用问题三、算法总结四、应用场景举例五、SPSS操作六、实际案例七、论文案例片段(待完善)聚类分析主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五视频回顾一、算法介绍 聚类分析是统计学中研究这种“物以类聚”问题的一种有效方法,它属于统计分析的范畴。聚类分析的实质是建立一种分类方法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类。这里所说的类就是一个具有相似性的个体的集合,不同类之间具有明显的区别。 聚类分原创 2020-08-03 17:16:14 · 1711 阅读 · 0 评论 -
【数学建模】主成分分析法PCA(评价与决策)
文章目录一、算法介绍二、适用问题三、算法总结四、应用场景举例五、SPSS操作1.归一化2. 主成分分析六、实际案例七、论文案例片段(待完善)主成分分析法主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五视频回顾一、算法介绍 主成分分析(Principal Component Analysis,PCA),将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。 在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度原创 2020-08-03 17:06:04 · 9023 阅读 · 1 评论 -
【数学建模】非线性规划模型与01规划模型(最优化)
文章目录一、算法介绍1. 01规划模型二、适用问题三、算法总结四、应用场景举例1.非线性规划模型2.01规划模型五、LINGO代码1.非线性规划模型2.01规划模型六、实际案例七、论文案例片段(待完善)线性规划模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五视频回顾一、算法介绍1. 01规划模型 01规划是指未知量的取值范围只能是0,1的规划问题,通常是线性规划二、适用问题三、算法总结四、应用场景举例1.非线性规划模型2.01规划模型原创 2020-08-03 16:08:59 · 16464 阅读 · 0 评论 -
【数学建模】线性规划模型LINGO求解(最优化)
文章目录一、算法介绍二、适用问题三、算法总结四、应用场景举例(lingo求解)五、LINGO代码六、实际案例七、论文案例片段(待完善)线性规划模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五视频回顾一、算法介绍 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改原创 2020-08-03 15:57:22 · 15648 阅读 · 4 评论 -
【数学建模】排队论(最优化)
文章目录一、算法介绍1.算法介绍2.模型介绍二、适用问题三、算法总结1.M/M/1排队系统2.M/M/S排队系统四、应用场景举例1.M/M/1排队系统2.M/M/S排队系统12.M/M/S排队系统2五、MATLAB代码1.M/M/12.M/M/S六、实际案例七、论文案例片段(待完善)排队论主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五视频回顾一、算法介绍1.算法介绍 排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。原创 2020-08-03 11:23:14 · 22576 阅读 · 3 评论 -
【数学建模】种群竞争模型(最优化)
文章目录一、算法介绍二、适用问题三、算法总结1.竞争模型四、应用场景举例五、MATLAB代码六、实际案例七、论文案例片段(待完善)种群竞争模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五视频回顾一、算法介绍 当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。二、适用问题种群竞争例如:不同企业推出的类似产品的销售情原创 2020-08-03 10:37:46 · 20629 阅读 · 2 评论 -
【数学建模】模拟退火算法(最优化)
文章目录一、算法介绍1. 退火2.物理退火3.模拟退火算法思想二、适用问题三、算法总结1. 步骤四、应用场景举例五、MATLAB代码六、实际案例模拟退火算法主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五视频回顾一、算法介绍1. 退火 退火是指将固体加热到足够高的温度,使分子呈随机排列状态,然后逐步降温使之冷却,最后分子以低能状态排列,固体达到某种稳定状态。2.物理退火 加温过程:增强粒子的热运动,消除系统原先可能存在的非均匀态; 等温过程:对于与环境换热原创 2020-08-02 17:44:14 · 6375 阅读 · 2 评论 -
【数学建模】图论模型-Floyd算法(最优化)
文章目录一、算法介绍二、适用问题三、算法总结1. 步骤四、应用场景举例五、MATLAB代码六、实际案例Floyd算法主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五视频回顾一、算法介绍二、适用问题图的最短路径问题,多源最短路径问题求解例如:从A地到B、C、D、E的最短路径三、算法总结1. 步骤四、应用场景举例五、MATLAB代码function [D,path,min1,path1]=floyd(a,start,terminal)原创 2020-08-02 17:17:26 · 2973 阅读 · 0 评论 -
【数学建模】图论模型-dijkstra算法(最优化)
文章目录一、算法介绍1. 带权邻接矩阵二、适用问题三、算法总结1. 步骤四、应用场景举例(待完善)五、MATLAB代码六、实际案例七、论文案例片段(待完善)dijkstra算法主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五一、算法介绍 Dijkstra算法能求-一个顶点到另一-顶点最短路径。它是由Di jkstra于1959年提出的。实际它能出始点到其它所有顶点的最短路径Dijkstra算法是一种标号法:给赋权图的每一一个顶点记一个数,称为顶点的标号(临时标号原创 2020-08-02 17:01:43 · 4010 阅读 · 0 评论 -
【数学建模】灰色预测模型(预测)
文章目录一、算法介绍1.灰色预测模型2.灰色系统理论3. 针对类型4. 灰色系统5. 灰色生成6. 累加生成7. GM(1,1)模型推导精度检验精度检验等级参照表二、适用问题三、算法总结1. 步骤四、应用场景举例1. 累加生成2. 建立GM(1,1)模型3. 检验预测值五、MATLAB代码六、实际案例七、论文案例片段(待完善)灰色预测模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五一、算法介绍1.灰色预测模型 灰色预测模型(Gray Forecast Mode原创 2020-08-02 16:43:07 · 93480 阅读 · 7 评论 -
【数学建模】多属性决策模型(评价与决策)
文章目录一、算法介绍1. 加权算术平均算子(WAA)2. 属性值归一化处理二、适用问题三、算法总结1. 步骤四、应用场景举例(企业评估)1. 建模构建决策矩阵2. 属性值归一化3. 对各个属性构造成对比较矩阵计算属性权重(层次分析法)4. 计算每个公司的WAA五、MATLAB代码六、实际案例七、论文案例片段(待完善)多属性决策模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五一、算法介绍 多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经原创 2020-08-02 11:35:12 · 20798 阅读 · 3 评论 -
【数学建模】层次分析法AHP(评价与决策)
文章目录一、算法介绍二、适用问题三、算法总结1. 步骤2. 如何构建层次结构模型3. 如何构建成对比较矩阵4. 如何进行一致性检验四、应用场景举例(旅游问题)1. 建模2. 构造成对比较矩阵3. 执行代码获得权重4. 计算决策层对总目标的权值五、MATLAB代码六、实际案例七、论文案例片段(待完善)层次分析法主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——四、五一、算法介绍 根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属原创 2020-08-01 17:06:38 · 2112 阅读 · 0 评论