LeetCode-53. 最大子序和

本文探讨了如何优化寻找最大子数组和问题的算法,从最初的暴力解法O(n^2)逐步改进到高效的O(n)解法。通过分析与比较不同的算法思路,特别是动态规划的应用,展示了算法优化的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解.

这道题貌似很熟悉,应该在哪里见过。。。但对我来说就是老规矩,没有暴力解决不了的问题

class Solution {
    public int maxSubArray(int[] nums) {
        int len = nums.length;
        int mark = nums[0];
        int sum = 0;
        for(int i=0;i<len;i++){
            for(int j=i;j<len;j++){
                sum += nums[j] ;
                if(sum>mark){
                    mark = sum;
                }
            }
            sum = 0;
        }
        return mark;
    }
}

执行用时 : 111 ms, 在Maximum Subarray的Java提交中击败了6.25% 的用户
内存消耗 : 42.5 MB, 在Maximum Subarray的Java提交中击败了50.47% 的用户

这样做的时间开销有点大,O(n^2),还未满足题目所说的O(n)
看了一下评论里的第一个代码后发现了:如果前面的子序列的和小于0,那么只需要重新确定序列首部;如果大于0,那肯定要与记录当前子序列的和相加.

public int maxSubArray(int[] nums) {
   	 int res = nums[0];
     int sum = 0;
     for(int num : nums){
         if(sum>0){
             sum += num;
         }else{
             sum = num;
         }
         res = Math.max(res,sum);
     }
     return res;
 }

执行用时 : 2 ms, 在Maximum Subarray的Java提交中击败了99.36% 的用户
内存消耗 : 38.4 MB, 在Maximum Subarray的Java提交中击败了85.15% 的用户

果然在自己提交后还是要看看别人的代码,分析与别人思路有哪些不同,吸取精华
不能什么都想着枚举解决,后面要边刷题边看一些常用的算法了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值