给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解.
这道题貌似很熟悉,应该在哪里见过。。。但对我来说就是老规矩,没有暴力解决不了的问题
class Solution {
public int maxSubArray(int[] nums) {
int len = nums.length;
int mark = nums[0];
int sum = 0;
for(int i=0;i<len;i++){
for(int j=i;j<len;j++){
sum += nums[j] ;
if(sum>mark){
mark = sum;
}
}
sum = 0;
}
return mark;
}
}
执行用时 : 111 ms, 在Maximum Subarray的Java提交中击败了6.25% 的用户
内存消耗 : 42.5 MB, 在Maximum Subarray的Java提交中击败了50.47% 的用户
这样做的时间开销有点大,O(n^2),还未满足题目所说的O(n)
看了一下评论里的第一个代码后发现了:如果前面的子序列的和小于0,那么只需要重新确定序列首部;如果大于0,那肯定要与记录当前子序列的和相加.
public int maxSubArray(int[] nums) {
int res = nums[0];
int sum = 0;
for(int num : nums){
if(sum>0){
sum += num;
}else{
sum = num;
}
res = Math.max(res,sum);
}
return res;
}
执行用时 : 2 ms, 在Maximum Subarray的Java提交中击败了99.36% 的用户
内存消耗 : 38.4 MB, 在Maximum Subarray的Java提交中击败了85.15% 的用户
果然在自己提交后还是要看看别人的代码,分析与别人思路有哪些不同,吸取精华
不能什么都想着枚举解决,后面要边刷题边看一些常用的算法了