dnn+i-vector在kaldi中的实现。

本文介绍了一种通过三个脚本实现IVector特征提取的方法。首先使用三音素模型训练UBM,接着基于UBM训练IVector提取器,最后利用提取器生成IVector特征。这些脚本简化了特征提取流程,并为后续的DNN+I-Vector训练提供了便利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需要三行脚本,你可以一行做一个脚本文件,这样就不需要每次提取特征都要重新训练1步骤和2步骤的模型了。

1:steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" data/train 1024 exp/tri3 exp/diag_ubm

#tri3是你训练的三音素模型所在的文件夹

2:steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" --nj "$nj" data/train exp/diag_ubm/ exp/extractor

#这里不用多说了,这个脚本用到了上一步生成的模型(diag_ubm)

3:steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj "$nj" data/train exp/extractor exp/ivectors_train

#这里生成的ivectors_train就是dnn脚本中的online_ivector_dir参数。比如在steps/nnet2/train_tanh_fast.sh中,这样写online_ivector_dir=exp/ivectors_train,这样就可以进行dnn+i-vector训练啦!

MSR Identity Toolbox: A Matlab Toolbox for Speaker Recognition Research Version 1.0 Seyed Omid Sadjadi, Malcolm Slaney, and Larry Heck Microsoft Research, Conversational Systems Research Center (CSRC) [email protected], {mslaney,larry.heck}@microsoft.com This report serves as a user manual for the tools available in the Microsoft Research (MSR) Identity Toolbox. This toolbox contains a collection of Matlab tools and routines that can be used for research and development in speaker recognition. It provides researchers with a test bed for developing new front-end and back-end techniques, allowing replicable evaluation of new advancements. It will also help newcomers in the field by lowering the “barrier to entry”, enabling them to quickly build baseline systems for their experiments. Although the focus of this toolbox is on speaker recognition, it can also be used for other speech related applications such as language, dialect and accent identification. In recent years, the design of robust and effective speaker recognition algorithms has attracted significant research effort from academic and commercial institutions. Speaker recognition has evolved substantially over the past 40 years; from discrete vector quantization (VQ) based systems to adapted Gaussian mixture model (GMM) solutions, and more recently to factor analysis based Eigenvoice (i-vector) frameworks. The Identity Toolbox provides tools that implement both the conventional GMM-UBM and state-of-the-art i-vector based speaker recognition strategies. A speaker recognition system includes two primary components: a front-end and a back-end. The front-end transforms acoustic waveforms into more compact and less redundant representations called acoustic features. Cepstral features are most often used for speaker recognition. It is practical to only retain the high signal-to-noise ratio (SNR) regions of the waveform, therefore there is also a need for a speech activity detector (SAD) in the fr
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值