目录
1.简介
对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
灰色关联分析可以用于衡量因素相关程度的同时,也有论文将其用于综合评价,其原理思想和TOPSIS法是比较相似的。
2.算法详解
2.1 数据标准化
因为每个指标的数量级不一样,需要把它们化到同一个范围内再比较。标准化的方法比较多,这里仅用最大最小值标准化方法。
设标准化后的数据矩阵元素为rij,由上可得指标正向化后数据矩阵元素为 (Xij)'
2.2 计算灰色相关系数
我们常见的灰色相关系数表达式如下:
Xo(k)为参考列,p为分辨系数。它的范围为(0~1),它的作用为控制区分度,它的值越小,区分度越大,它的值越大,区分度越小。 常常取0.5。乍一看这个公式还是有些难懂,接下来详细介绍一下它的原理。
2.3 计算灰色关联度系数
- 参考向量的选择
例如研究x2指标与x1指标之间的灰色关联度。所以将x1列作为参考向量,即要研究与谁的关系,就将谁作为参考。设参考向量为Y1=x1,生成新的数据矩阵 X1=x2.
- 生成绝对值矩阵
设生成的绝对值矩阵为A