每天一篇313/365 UnDeepVO: Monocular Visual Odometry through Unsupervised Deep Learning补

提出UnDeepVO系统,一种利用深度神经网络进行单目视觉里程计的方法,能估计六自由度姿态及景深,具备绝对尺度恢复能力。采用无监督学习策略,使用立体图像训练并单目图像测试,实现在KITTI数据集上姿态估计的高精度表现。
UnDeepVO: Monocular Visual Odometry through Unsupervised Deep Learning
code
摘要

本文提出了一种新的单目视觉里程计(VO)系统UnDeepVO。uneepvo能够利用深度神经网络估计单目相机的六自由度姿态和景深。该方法有两个显著特点:一是无监督的深度学习方案,二是绝对尺度恢复。具体地说,我们使用立体图像对来训练不可重复性,但是使用连续的单目图像来测试它。因此,UnDeepVO是一个单目系统。为训练网络而定义的损失函数是基于时空密集信息的。系统概述如图1所示。在KITTI数据集上的实验表明,我们的UnDeepVO在姿态精度方面取得了良好的性能。

贡献

1.我们展示了一个具有恢复绝对尺度的单目视觉系统,并且通过利用空间和时间几何约束以无监督的方式实现了这一点。
2.由于在训练过程中使用了立体图像对,因此不仅可以生成估计的姿势,还可以生成具有绝对比例的估计密集深度图。
3.我们使用KITTI数据集对我们的VO系统进行了评估,结果表明UneepVO在单目相机的姿态估计方面取得了良好的性能。

方法

在这里插入图片描述
数据集: UnDeepVO只需要立体图像进行训练而不需要标记数据集,因此可以使用大量的未标记数据集对其进行训练,以不断提高其性能。

空间对齐

位姿估计损失函数定义
作者提出同时用双目图像对儿估计深度和位姿,用到了左右图像一致性,和前后帧一致性来约束
1左右极限投影误差
在这里插入图片描述
在这里插入图片描述
2.视差一致性损失
在这里插入图片描述
3.位姿一致性损失
作者分别估计了左右个图像序列的位姿,然后让左右位姿对齐
在这里插入图片描述

空间对齐

1.前后帧对齐
在这里插入图片描述
在这里插入图片描述
2. ICP匹配
在这里插入图片描述

在这里插入图片描述

实验
位姿估计

在这里插入图片描述
在这里插入图片描述

深度估计

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值