1321:棋盘问题

1321:棋盘问题

总时间限制: 1000ms 内存限制: 65536kB
描述
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
输入
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
输出
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
样例输入

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

样例输出
2
1

分析:n皇后问题,不可以同行同列,那么每次递归都是增加一行确保不同行,然后设置一个一维数组作为列的标志,保证不同列。k个棋子,也就是k行,那么在主函数调用dfs的时候就要用for循环n-k遍。
dfs中遍历列,发现可以放置棋子的地方就判断还剩下几个棋子,如果只剩下一个就res++,然后返回,否则去设置列标志并且继续递归,递归的时候还是像主函数中设置for循环。

#include <iostream>
using namespace std;
//http://bailian.openjudge.cn/practice/1321/
//参考别人的才做出来,发现对dfs和bfs还需要练习 
int n,k,c[10],res;//c[i]表示列是否被标记的情况 
char a[10][10];
void dfs(int x,int y){
    for(int i=0;i<n;i++){
        //对每一列进行遍历 
        if(a[x][i]=='#'&&c[i]==0){
            if(y==1){
                res++;
            }
            else{
                c[i]=1;
                for(int j=x+1;j<n-y+2;j++){
                    dfs(j,y-1);
                }
                c[i]=0;
            }
        }
    }
}
int main(int argc, char *argv[]) {
    while(cin>>n>>k){
        if(n==-1&&k==-1){
            break;
        }
        res=0;
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                cin>>a[i][j];
            }
            c[i]=0;
        }
        for(int i=0;i<=n-k;i++){
            //放置k个棋子最少需要k行,这样满足不同行的要求
             dfs(i,k); 
        } 
        cout<<res<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值