最近在学习数据可视化,梳理一下其中一些诸如pandas绘图、matplotlib绘图、pyplot(plt)、axes等概念。
重要的事情说三遍:axes不是axis!axes不是axis!axes不是axis!
重要的事情说三遍:pyplot是接口不是对象!pyplot是接口不是对象!pyplot是接口不是对象!
很多书上一上来就直接import matplotlib.pypltot as plt
,然后就教你plt.xxx()
。这种方式固然没错,可问题就出在了plt
只是一个interface,只是一个接口,连对象都算不上(仔细回想,你确实没有实例化过任何一个名叫plt
类型的对象)这给本来就对面向对象编程并不很熟悉的我带来无穷无尽的困扰。plt
这个接口的意义在于:
- 通过接口直接画图(这时候我们把这个接口看成一个黑盒,根本不要去管其中有些什么对象类型)
- 通过接口实例化别的类型的对象(如
figure
类型axes
类型等)
1.通过plt.xxx()
直接绘图
就像各种教程和书上的常规操作一样,我们可以用plt.plot(), plt.bar()等绘制不同类型的图(部分总结如下表)
函数名 | 作用 |
---|---|
plt.bar() | 条形图 |
plt.barh() | 横排条形图 |
plt.boxplot() | 箱线图(plt.box()是另一个函数) |
plt.hist() | 频率直方图 |
plt.plot() | 折线图 |
我们可以用plt
的其他一些函数来对图表的标题等进行设置(部分总结如下表)
函数名 | 作用 |
---|---|
plt.title() | 设置图表标题 |
plt.grid() | 设置图表网格 |
plt.xlabel();plt.ylabel | 设置x;y轴标题 |
plt.xticks();plt.yticks() | 设置x;y轴刻度 |
plt.xlim();plt.ylim() | 设置x;y轴范围 |
plt.annotate() | 设置标注 |
(具体的参数和用法详见 https://matplotlib.org/api/pyplot_summary.html )
用plt绘图的方便之处,同样也是它最令人迷惑的地方,就是它没有一个显性的对象。
我们甚至可以调用pandas绘图以后,用表二中的plt函数来对pandas生成的这个图表进行设置。
例程如下:
import matplotlib.pyplot as plt
from pandas import Series
data = Series([1.47,