自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(140)
  • 收藏
  • 关注

原创 [游戏开发Godot] 手把手教你安装godot

摘要 下载方式:访问GitHub平台即可获取所需资源。下一章节将介绍简易游戏开发教程,内容包括基础开发流程和实现方法,适合初学者快速上手游戏编程。

2025-07-15 17:38:34 66

原创 MySQL中使用group_concat遇到的问题及解决

在使用group_concat的过程中遇到个问题,这里记录一下:在中有个配置参数group_concat_max_len,它会限制使用group_concat返回的最大字符串长度,默认是1024。查询group_concat_max_len大小:修改group_concat_max_len大小:方法一:这种方法可以在不重启的情况下使用,但是如果重启服务器后会还原配置。可以通过修改(my.ini)配置文件来彻底解决这个问题。方法二:修改(my.ini)配置文件,需要重启服务器后才能生效。

2025-07-11 16:58:49 791

原创 【大模型】从0到1:DeepSeek + Coze API调用全攻略,企业,开发个人专属AI智能体使用详解,小白也能轻松上手

本文介绍了如何通过API将Coze智能体集成到自有系统中的完整步骤:1)获取API token和个人工作空间的space_id;2)通过GET请求获取bot_id;3)使用POST发起对话请求,需包含bot_id、user_id和问题内容;4)通过两次API调用异步获取响应消息。文章还解释了Coze采用异步处理机制的原因,并预告了下期将讲解Java调用Coze接口的实现方法。整个过程需要使用API工具进行调试,确保了系统集成的可行性。

2025-07-03 17:24:09 56

原创 基于[coze][dify]搭建一个智能体工作流,使用第三方插件抓取热门视频数据,自动存入在线表格

本文介绍了一个智能体创建方案,用于批量采集视频数据并整理到多维表格中。主要包括:1)通过第三方插件批量搜索视频获取信息;2)使用Python代码格式化处理视频数据;3)创建多维表格并导入数据。工作流程详细说明了关键词生成、视频搜索、数据格式化和表格创建等步骤,并提供了代码示例。特别强调调试注意事项,如表格token一致性要求。该方案可有效实现视频数据采集整理自动化。

2025-07-02 16:23:34 118

原创 Java实现PDF转图片功能&图片转PDF

本文介绍了Java实现图片与PDF相互转换的方法。图片转PDF使用iTextPDF库,通过创建Document对象、加载图片并设置尺寸后添加到PDF文档中完成转换。PDF转图片则使用Apache PDFBox库,通过加载PDF文档、渲染每一页为图像并保存为指定格式的图片文件。两种方法都提供了完整的Java代码示例和所需的Maven依赖配置,实现简单高效的文件格式转换功能。

2025-07-01 17:57:47 192

原创 一文读懂:大模型RAG(检索增强生成)含高级方法-第2章

摘要:本文系统介绍了检索增强生成(RAG)技术的核心流程与高级优化方法。基础RAG包含文档分块、向量化、索引构建和LLM生成四个步骤。高级技术包括:1)优化分块策略与嵌入模型选择;2)构建分层索引、假设问题索引等高效检索系统;3)采用重排和混合搜索提升结果质量;4)查询转换和路由技术;5)智能体架构实现复杂推理。研究显示,微调编码器和LLM可提升5%的性能指标。评估框架如Ragas建议从检索相关性、答案忠实度和问题相关性三个维度评估系统。RAG融合技术通过生成多查询显著提升搜索多样性,但也需权衡延迟和成本。

2025-06-27 18:01:03 39

原创 一文读懂:大模型RAG(检索增强生成)含高级方法-第1章

摘要:检索增强生成(RAG)已成为当前大语言模型(LLM)应用的核心解决方案,通过结合垂域数据检索与提示工程,有效解决通用大模型的知识局限性、幻觉问题和数据安全隐患。其核心架构包含数据准备(提取、分割、向量化、入库)和应用(检索、Prompt注入、生成)两阶段,利用向量数据库实现高效知识召回。关键技术涉及多查询生成、语义搜索、Embedding模型选择(如M3E、BGE)及Prompt优化。典型应用流程包括:用户提问→多角度查询生成→向量检索→知识注入→LLM生成答案。开源工具链(LlamaIndex、La

2025-06-27 17:56:08 636

原创 mysql超时时间设置 java.sql.SQLTransientConnectionException: HikariPool-4 - Connection is not a

摘要:SQLTransientConnectionException异常表明HikariCP连接池无法获取可用数据库连接,可能由连接数耗尽、网络问题、服务器负载高或连接泄露导致。解决方案包括:调整连接池配置(最大连接数、超时时间)、检查数据库服务器状态、修复未关闭的连接、添加监控日志。针对MySQL,可通过修改wait_timeout和interactive_timeout参数来优化连接超时设置,建议先在测试环境验证调整效果。(150字)

2025-06-20 11:06:48 553

原创 基于扣子[coze]搭建一个古代中医知识文化学习助手

摘要:本文详细介绍了创建智能体机器人的流程与配置规范。首先通过工作空间创建智能体,设置名称、简介并AI生成图标。重点构建了一位精通中国传统文化的专家角色,具备三大核心技能:1)提供古文含义及背景分析;2)考证古文出处;3)解读中医知识。所有回答需标注知识来源,并采用固定Markdown格式。系统支持插件扩展,包括联网搜索、图像处理等功能,还可对接知识库。最后设置开场白和音色选项,并支持发布至微信公众号。提示词经过优化,强调回答的准确性和格式规范性,限定仅输出传统文化相关内容。(150字)

2025-06-06 17:39:05 48

原创 mysql使用 过程函数 for in函数批量修改数据

mysql使用 过程函数 for in函数 批量修改数据。之前写的一个sql在某些版本mysql不能正常运行。

2025-05-29 17:39:46 69

原创 使用AI应用开发平台搭建夸奖机器人,玩转AI【COZE入门案例-第1课】

但是如果你为智能体设计的功能无法仅通过模型能力完成,则需要为智能体添加技能,拓展它的能力边界。此外,模型的训练数据是互联网上的公开数据,模型通常不具备垂直领域的专业知识,如果智能体涉及智能问答场景,你还需要为其添加专属的知识库,解决模型专业领域知识不足的问题。目前支持将智能体发布到飞书、微信、抖音、豆包等多个渠道中,能力优秀的智能体也可以发布到智能体商店中,供其他开发者体验、使用。,通过自然语言描述你的智能体创建需求,扣子根据你的描述自动创建一个专属于你的智能体。面板中描述智能体的身份和任务。

2025-05-06 17:28:06 280

原创 【sql】mysql 查询重复数据,并且进行删除

这种方法使用GROUP BY对字段进行分组,然后使用HAVING过滤出出现次数大于1的重复数据。这种方法使用ROW_NUMBER()函数对字段进行排序,并根据排序后的行号过滤出重复数据。方法一:使用GROUP BY和HAVING子句。方法二:使用窗口函数ROW_NUMBER()方法三:使用JOIN子句。

2025-04-10 15:47:24 244

原创 【JAVA】【疑难杂症解决!】org.springframework.transaction.UnexpectedRollbackException:

因为我在方法上写了@Transactional注解,里边调用的service的方法上也写了@Transactional注解,并且我在controller还写了try Catch捕获,在catch中使用e.printStackTrace()打印,没有我想要的具体提示信息,在控制台直接报了。1.把service中的@Transactional取消掉,直接使用最外层的事务,但是我是调用了两个service,并且这两个service别的地方还需要单独用,所以就没用这种方式。事实我遇到的问题是数据库的问题!

2025-04-01 18:00:59 170

原创 【人工智能】实现【DeepSeek】使用【Anything LLM】并使用本地知识库回答!本地部署告别服务器崩溃的烦恼!

增强和生成就是,在向量数据库找到相关内容并提取后,将相关内容和原始问题,输入到大模型中,由大模型整合后输出回答。另外,如果发现AI回答的不是知识库的内容,还可以在文档Save& Embed后,点击“图钉图标”。先讲一下分块大小是什么意思,如果分块大小为500,程序会将你的文档分成n个500左右的片段。你在使用知识库时,模型会根据你的问题将这100个片段排序,相关度最高的排最前面。这个就是回答依据的倾向性,是依据大模型自身的知识,还是参考知识库的知识。有标题,分段,各部分内容逻辑清晰,方便机器去理解。

2025-03-07 18:02:40 253

原创 【人工智能】实现【DeepSeek】本地部署,告别服务器崩溃的烦恼!

实现【DeepSeek】本地部署,告别服务器崩溃的烦恼!一:安装 Ollama要在本地运行 DeepSeek,我们需要使用 Ollama——一个开源的本地大模型运行工具。首先,访问 Ollama官网 下载该工具。官网提供了针对不同操作系统的安装包,用户只需选择适合自己电脑的版本即可。在本例中,我们选择下载适用于 Windows 操作系统的版本。选择windows系统版本安装安装完成 Ollama 后,打开电脑的 CMD(命令提示符)。

2025-02-26 11:40:09 785

原创 【sql+JAVA性能优化】sql一个奇葩巨坑,今天被发现了!线上突然出现Lock wait timeout exceeded; try restarting transaction

但是框架sql 其实是UPDATE current_audit_node SET del_flag = 1 WHERE id = 1888839568812167170。对于数据库来说认为其是一个 数字类型 查询对象 为varchar 字符类型。数据库该字段使用的是varchar 类型。是一个 long 的数字类型。不同处就是底下的多了''一直没有注意过这个问题。

2025-02-10 18:22:09 308

原创 npm启动前端项目时报错(vue) error:0308010C:digital envelope routines::unsupported

找到 package.json 文件右键,在集成终端中打开,直接输入 set NODE_OPTIONS=--openssl-legacy-provider 回车,然后 npm run serve 重新运行项目即可。经过探索,发现问题所在,主要是nodeJs V17版本发布了OpenSSL3.0对算法和秘钥大小增加了更为严格的限制,导致了nodeJs V17之前版本不受影刺而nodeJs V17和之后的版本会出现这个错误。// windows系统。②Linux / Mac 平台。// linux系统。

2025-01-25 17:56:42 1652

原创 【JAVA+flowable】[工作流引擎]如何判断流程实例是否运行完成

注意:PROCESS_COMPLETED事件是流程实例级别的,它会在整个流程实例完成时被触发,而不仅仅是某个任务。在Flowable工作流引擎中,判断流程实例的所有任务是否运行完成,主要可以通过查询流程实例的历史状态或者监听流程执行过程中的相关事件来实现。Flowable引擎在流程执行过程中会触发一系列事件,如任务创建、任务完成、流程实例开始、流程实例完成等。综上所述,通过查询历史流程实例状态或监听流程执行事件,可以有效地判断Flowable工作流引擎中的流程实例是否已经完成。1. 查询历史流程实例状态。

2025-01-23 16:38:31 675

原创 【JAVA架构】开发学校内部论文,文章查重系统【python】

【JAVA架构】开发学校内部论文,文章查重系统【python】java版本的,也有python版本。使用了查重,分词算法。

2025-01-13 17:57:43 258

原创 【JAVA】SpringBoot 实现 License 认证(只校验有效期)&认证安全性保证

其他参数使用默认值即可,validity(私钥的有效期)设置十年就可以,因为以后会通过私钥和证书有效期生成证书license。需要关注以及修改的参数:storepass(私钥库的密码)、keypass(私钥的密码)公钥与生成的证书给使用者(放在验证的代码中使用),验证证书license是否在有效期内。因此通常的做法是使用服务器许可文件,在应用启动的时候加载证书。授权者保留私钥,使用私钥和使用日期生成证书license。以上都是授权者需要做的,下面说下使用者需要的配置。私钥文件,自己保存,以后用于生成。

2025-01-10 11:32:12 604

原创 java.util.ConcurrentModificationException 异常原因&解决方法

而Itr的remove方法修改的是自身的变量expectedModCount。这两个变量的作用都是记录修改次数的。所以,在用ArrayList的remove方法进行删除操作以后,Itr里面的expectedModCount会与ArrayList的modCount进行比较,二者不相等,所以会抛错。但是我在删除的时候是通过ArrayList的remove方法去操作的,不是Itr内部的那个删除方法去操作的。简单地说下原因,在项目的代码中,遍历的方式是增强 for 循环,在底层使用的也是迭代器。

2025-01-07 11:26:48 756

原创 【人工智能】强化学习 5 —— SARSA 和 Q-Learning算法代码实现

关于SARSA 和 Q-Learning算法的详细介绍,本篇博客不做过多介绍,若不熟悉可点击文章开头链接查看。SARSA:Q-Learning可以看出来,两者的区别就在计算 TD-Target 的时候,下一个动作 a' 是如何选取的1)在状态 s' 时,就知道了要采取那个动作 a',并且真的采取了这个动作2)当前动作 a 和下一个动作 a' 都是 根据 ϵ� -贪婪策略选取的,因此称为on-policy学习。

2024-12-23 16:10:57 86

原创 【人工智能】CUDA是什么?一文揭开 NVIDIA CUDA 神秘面纱

CUDA 包含运行时内核、设备驱动程序、优化库、开发工具和丰富的 API 组合,使得开发人员能够在支持 CUDA 的 GPU 上运行代码,大幅提升应用程序的性能。(2)线程和线程块的组织:在设备代码中,计算任务被分解为多个线程,这些线程组成线程块(Block),多个线程块组成一个线程网格(Grid)。通常而言,“CUDA” 不仅指平台本身,也可指为充分利用 NVIDIA GPU 的计算能力而编写的代码,这些代码多采用 C++ 和 Python 等语言编写,以充分发挥 GPU 加速的优势。

2024-12-10 17:58:36 6900

原创 【人工智能】Python | 预测模型对比(1)

2. ARIMA模型(自回归积分滑动平均模型)是一种基于时间序列数据的预测方法,它通过分析历史数据中的自相关性和移动平均性来预测未来值。ARIMA模型是一种用于时间序列预测的统计方法,特别适合于平稳的时间序列数据,考虑了自回归(AR)、差分(I)和移动平均(MA)部分来捕捉数据中的趋势与季节性变化。如果数据之间存在较强的线性关系,且目标是预测数值型数据,那么线性回归预测可能更好。线性回归预测和ARIMA模型预测是两种不同的时间序列预测方法,适用于不同类型的数据和预测目标。

2024-11-15 17:52:02 272

原创 【人工智能】Python数学建模必备五大模型之一 | 预测模型详解(1)

(2)差分(I):有时候,时间序列数据并不稳定,比如有明显的上升或下降趋势,为了让数据变得稳定,我们可以对它进行差分处理。包括检验模型参数的显著性,模型本身的有效性以及检验残差序列是否为白噪 声序列.如果模型通过检验,则模型设定基本正确,否则,必须重新确定模型的形式,并诊断检验,直至得到设定正确的模型形式;(1)灰色系统:想象一下,你有一个盒子,里面装了一些东西,但你看不清楚里面具体是什么,只能看到模糊的影子或者猜测里面可能有哪些东西,这就是灰色系统,它表示我们只知道部分信息,还有部分信息是不确定的。

2024-11-15 17:38:36 906

原创 【人工智能】Python数学建模必备五大模型之一 | 预测模型详解(2)

在决策树回归中,如果树长得太茂盛了,它就会记住训练数据中的每一个细节,甚至是噪声,这样在新的数据上它就会表现得不好了。决策树回归模型通过构建一个树状结构来对数据进行建模,树的每个内部节点表示一个属性(或特征)上的判断条件,每个叶子节点则存储一个预测值(对于回归问题,这个预测值通常是该叶子节点下所有样本目标变量的均值)。袋外数据可以用于评估模型的性能,而无需额外的测试集。通过递归调用上述树的建立方法,可得到大量回归树结构,并使用Obj搜索最优的树结构,将其放入已有模型中,从而建立最优的XGBoost模型。

2024-11-15 17:28:58 1572

原创 【人工智能】Python 中,常用的人工智能框架

它提供了丰富的机器学习算法和深度学习模型,广泛应用于各种人工智能任务,包括图像和语音识别、自然语言处理、推荐系统等。它的设计简单易用,并且对数据预处理、特征工程和模型评估等步骤都提供了完善的支持,被广泛应用于分类、回归、聚类等问题。它提供了一个强大的计算图模型,并且有丰富的神经网络层和优化算法,被广泛用于图像识别、自然语言处理等任务。除了上述框架,还有一些其他的Python人工智能框架,如CNTK、MXNet等,它们都有自己的特点和优势,根据具体的需求和应用可以选择不同的框架来使用。

2024-11-15 17:22:50 486

原创 JAVA制作SSO用户中心实现同步登录

如果用户中心的redis出现问题。一般是通过前端访问后端接口时请求中的Authorization 实现的。登录时在用户中心redis保存 code与token的对应关系。此链接跳转时,用code获取token及用户信息返回前端即可。而且 其它系统有自己的注册模块还需要同步注册信息至用户中心。是没有保存session信息的。则通过不同系统跳转时通过,跳转连接后添加code。则通过不同系统跳转时通过,跳转连接后添加code。如果前端项目是不同的分开的。跳转进入的系统 这时通过接口请求用户中心。

2024-11-07 16:17:22 264

原创 软件的哲学:软件的自洽性

理论上说,它们可以实现任何一个客户需求(当然现实世界并不完美,存在的缺陷是不可能满足所有需求,还是需要定制开发。软件自恰和需求无关,没有任何需求的情况下,一样可以检查系统的自洽性。软件的自洽性:一个好的软件,是具有自洽性的。低代码和工作流便是符合这种特性的软件产品。即软件并不依赖任何一个特定的需求存在。即软件便是自身存在意义。

2024-11-07 10:12:16 295

原创 低代码工作流平台概述-自研

6.在线代码扩展接口设计。

2024-11-04 16:59:01 440

原创 【进阶sql】复杂sql收集及解析【mysql】

开发时会出现,必须写一些较复杂sql的场景可能是给会sql的客户 提供一些统计sql或是临时需要统计数据信息但是 开发一个统计功能有来不及的情况也可能是报表系统组件 只支持 sql统计的情况特地记录下这些sql 作为积累substring 截取查询出的字符串,用于截取文件名这种把 没必要的.后缀取掉等通过()让查询结果成为一个临时结果表配合需求查看。是根据这个配置 底部显示的去获取 已经审核完成的任务 审核人 所以要 关联 audit_record 审核记录表concat用到了。

2024-11-01 16:28:23 733

原创 Java 的 8 种异步实现方式,让性能炸裂起来ASYNC

首先我们先看一个常见的用户下单的场景:在同步操作中,我们执行到 发送短信 的时候,我们必须等待这个方法彻底执行完才能执行 赠送积分 这个操作,如果 赠送积分 这个动作执行时间较长,发送短信需要等待,这就是典型的同步场景。我们创建了一个高质量的技术交流群,与优秀的人在一起,自己也会优秀起来,赶紧点击加群,享受一起成长的快乐。另外,如果你最近想跳槽的话,年前我花了2周时间收集了一波大厂面经,节后准备跳槽的可以点击这里领取!实际上,发送短信和赠送积分没有任何的依赖关系,通过异步,我们可以实现赠送积分和。

2024-10-28 13:40:50 1508

原创 【JAVA+flowable】工作流 获取流程节点 几种方法总结

一般是 未完成审核流程 所处当前节点 之前所有节点及 下一个节点。事实上就是解析流程 bpmn xml文件 获取到所有节点。flowable中 获取流程中任务节点的方法有好几种。获取流程 正在激活 中任务节点。2.获取流程 所有 任务节点。1.这种是常见的一种。

2024-10-11 18:04:22 1642

原创 【JAVA+flowable】工作流 实现抄送节点

当前节点id Activity_02nvulp 到下一节点 Activity_1ugwbm5。由于flowable并没有 抄送节点 这一节点类型 所以用自带的 空白任务 改造成抄送。2.接下来就是 获取下一节点 Activity_1ugwbm5 的抄送人信息了!但是发现自定义的 抄送任务 和 用户任务 实际上是flowable中不同的对象!由于flowable并没有 抄送节点 这一节点类型。1.就是需要获取到 流程当前节点,下一个抄送节点。增加一种节点任务类型: 抄送任务。即当前节点到下一节点信息。

2024-10-10 14:12:23 1639

原创 【JAVA+flowable】工作流流程引擎详解-网关

汇聚:所有并行分支到达包含网关,会进入等待状态, 直到每个包含流程token的进入顺序流的分支都到达。包含网关可以看做是排他网关和并行网关的结合体。事件网关的外出顺序流和普通顺序流不同,这些顺序流不会真的"执行", 相反它们让流程引擎去决定执行到事件网关的流程需要订阅哪些事件。join汇聚: 所有到达并行网关,在此等待的进入分支, 直到所有进入顺序流的分支都到达以后, 流程就会通过汇聚网关。分支: 所有外出顺序流的条件都会被解析,结果为true的顺序流会以并行方式继续执行, 会为每个顺序流创建一个分支。

2024-09-04 14:24:12 1399

原创 【前端VUE】npm i 出现版本错误等报错 简单直接解决命令

-legacy-peer-deps:安装时忽略所有peerDependencies,忽视依赖冲突,采用npm版本4到版本6的样式去安装依赖,已有的依赖不会覆盖。--force 会无视冲突,并强制获取远端npm库资源,当有资源冲突时覆盖掉原先的版本。使用--force或--legacy-peer-deps可解决这种情况。建议用--legacy-peer-deps 比较保险一点。万能解决命令---------前端vue npm i。在终端重新安装即可解决。

2024-08-13 18:02:58 1293 2

原创 【人工智能】【深度学习】 Python中进行数据归一化处理

归一化是数据预处理中的一种常用技术,旨在将数据按比例缩放,使之落入一个小的特定区间,通常是[0, 1]或[-1, 1]。归一化通过将所有特征缩放到相同的尺度(如[0, 1]或[-1, 1]),可以减少不同特征之间的尺度差异,从而加速算法的收敛速度。归一化是数据预处理中的一个重要步骤,它有助于将数据缩放到一个特定的区间内,通常是[0, 1]或[-1, 1],以便于后续的数据分析和机器学习算法处理。这是最简单的归一化方法之一。其中, 是原始数据, 是数据的均值, 是数据的标准差, 是归一化后的数据。

2024-08-13 14:23:35 183

原创 Python中axis=0与axis=1指的方向有什么不同详解(代码详解,实例理解)

根据官方的说法,1表示横轴,方向从左到右;0表示纵轴,方向从上到下。当axis=1时,数组的变化是横向的,体现出列的增加或者减少。反之,当axis=0时,数组的变化是纵向的,体现出行的增加或减少。下图为dataframe中axis为0和1时的图示:

2024-08-13 12:22:00 1077

原创 Python中的shape[0]、shape[1]和shape[-1]分别是什么意思(代码解析)

首先需要知道,对于二维张量,shape[0]代表行数,shape[1]代表列数,同理三维张量还有shape[2]shape函数是Numpy中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度。直接用.shape可以快速读取矩阵的形状,使用shape[0]读取矩阵第一维度的长度。shape[0]读取矩阵第一维度的长度,即数组的行数。有时我们会遇到一种新的表示方法:shape[-1]shape[0]:表示矩阵的行数。shape[1]:表示矩阵的列数。shape[1]的使用方法。

2024-08-13 10:58:13 1436

原创 【人工智能】 使用线性回归预测波士顿房价 paddlepaddle 框架 飞桨

经典的线性回归模型主要用来预测一些存在着线性关系的数据集。回归模型可以理解为:存在一个点集,用一条曲线去拟合它分布的过程。如果拟合曲线是一条直线,则称为线性回归。如果是一条二次曲线,则被称为二次回归。线性回归是回归模型中最简单的一种。本示例简要介绍如何用飞桨开源框架,实现波士顿房价预测。其思路是,假设uci-housing数据集中的房子属性和房价之间的关系可以被属性间的线性组合描述。在模型训练阶段,让假设的预测结果和真实值之间的误差越来越小。

2024-08-12 15:10:43 1345

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除