GPT-SoVITS 配置文件说明
本文档详细说明了 GPT-SoVITS 项目中各个配置文件的用途和使用方法。
配置文件概述
1. tts_infer.yaml
这是推理时使用的配置文件,包含了三个主要配置部分:
custom: # 自定义配置(GPU版本)
device: cuda # 使用GPU
is_half: true # 使用半精度计算
version: v2 # 使用v2版本模型
default: # 默认配置(CPU v1版本)
device: cpu # 使用CPU
is_half: false # 使用单精度计算
version: v1 # 使用v1版本模型
default_v2: # 默认配置(CPU v2版本)
device: cpu # 使用CPU
is_half: false # 使用单精度计算
version: v2 # 使用v2版本模型
2. 训练相关配置文件
s1.yaml
: 基础训练配置s1big.yaml
: 更大的模型训练配置s1big2.yaml
: 更大的模型训练配置(变体)s1longer.yaml
: 更长的训练配置s1longer-v2.yaml
: v2版本的更长训练配置train.yaml
: 训练时的通用配置文件s2.json
: SoVITS 模型的配置文件
配置参数说明
is_half 参数
控制模型是否使用半精度(FP16)计算:
true
: 使用 FP16(半精度浮点数)- 优点:内存占用少,计算速度快
- 缺点:精度略低,可能不稳定
false
: 使用 FP32(单精度浮点数)- 优点:精度高,计算稳定
- 缺点:内存占用大,计算速度慢
device 参数
指定运行设备:
cuda
: 使用 GPUcpu
: 使用 CPU
version 参数
指定模型版本:
v1
: 第一代模型v2
: 第二代模型(推荐)
使用建议
-
如果你有 GPU:
- 使用
custom
配置 is_half: true
可以节省显存- 计算速度更快
- 使用
-
如果你只有 CPU:
- 使用
default_v2
配置(推荐) is_half: false
更稳定- 如果内存不足,可以尝试
default
配置
- 使用
-
启动命令:
# 使用默认配置(v2版本)
python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml
# 指定使用特定配置
python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml --config-name custom
注意事项
- 训练配置文件(s1.yaml 等)仅用于模型训练,不能用于 TTS 推理
- TTS 推理必须使用
tts_infer.yaml
- 如果遇到内存不足,可以尝试切换到半精度模式
- 如果生成质量不稳定,可以尝试切换到单精度模式
- v2 版本模型质量通常优于 v1 版本,建议优先使用 v2 版本