RBM的Learning问题

本文介绍了受限波尔茨曼机(RBM)的学习问题,重点讨论了CD-Learning思想下的参数估计解法。通过回顾RBM的概率图模型和联合分布,阐述了对数似然函数的梯度求解过程。采用CD-k算法进行Gibbs采样,用于近似梯度的第二个式子,并详细解释了采样过程,最后执行梯度下降法更新RBM的参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.受限波尔茨曼机的learning问题利用了CD-k算法

2.它对每个观测样本进行一次Gibbs采样,在k-step得到采样样本

3.最终得到跟训练集样本数大小的的M个采样样本,然后执行梯度下降法

受限波尔茨曼机(RBM)一文中,我们介绍了RBM的联合分布表达式,以及Inference问题,当时我们遗漏了它的Learning问题,求解RBM的学习问题要基于CD-Learning的思想,我们这一篇就介绍RBM的参数估计解法。

开始之前,先回顾一下RBM的概率图模型表示:

以及其联合分布形式:

RBM的似然函数梯度形式

给定训练数据集S,其样本个数是M,能观测的变量是v:

那么对观测变量的对数似然函数为:

对似然函数化简的等号右边第一项求导有:

对等号右边第二项求导有:

所以,对数似然函数的梯度可以化为:

其中要求解的参数θ是:

RBM的参数求解迭代式

有了对数似然函数的梯度,我们利用梯度法求解RMB的参数θ.

先看边的权重参数w。根据能量函数表达式有:

于是:

等号右边第一项可以化简:

注:RBM的隐状态取值0或1

等号右边第二项化简为:

于是得到对p(v)对边权重w的梯度表达式

按照上面的化简思路,p(v)对α,β的梯度表达式更加容易得到,这里不再赘述。我们重点关注的是对于梯度的第二个式子:

它很难直接求解,我们得利用CD-Learning的思路构造梯度进行近似推断求解。

RBM的对比散度算法

我们观察上一节梯度的第二个式子,它其实是p(v0下的期望:

那么我们就可以利用MCMC采样思想,得到其期望。采取Gibbs的k-step算法(即CD-k)进行采样:

它的采样过程如下图所示:

对每个样本都会进行一次Gibbs采样过程,最终会得到M个采样样本,从而最终得到边权重wij的梯度:

然后执行梯度法即可!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值