分子特征数据库R包msigdb

本文介绍了如何在R中使用msigdb包下载和处理MSigDB数据库,包括hallmark、curated、regulatory等不同类型的基因集。通过GSEABase和ExperimentHub,展示了如何获取、筛选和管理这些生物标志物集合,为基因表达分析提供资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

msigdb软件包在R可访问对象中提供分子特征数据库(MSigDB)。分子特征集存储在GSEABase包的GeneSet类对象中,整个数据库存储在GeneSetCollection对象中。然后,这些数据将托管在ExperimentHub上。本文件包中使用的数据来自Broad Institute的MSigDB。每个基因集的元数据与基因集一起存储在基因集类对象中。

GSEA | MSigDB

Hhallmark gene sets  are coherently expressed signatures derived by aggregating many MSigDB gene sets to represent well-defined biological states or processes.
C1positional gene sets  for each human chromosome and cytogenetic band.
C2curated gene sets  from online pathway databases, publications in PubMed, and knowledge of domain experts.
C3regulatory target gene sets  based on gene target predictions for microRNA seed sequences and predicted transcription factor binding sites.
C4computational gene sets  defined by mining large collections of cancer-oriented microarray data.
C5ontology gene sets  consist of genes annotated by the same ontology term.
C6oncogenic signature gene sets  defined directly from microarray gene expression data from cancer gene perturbations.
C7immunologic signature gene sets  represent cell states and perturbations within the immune system.
C8cell type signature gene sets  curated from cluster markers identified in single-cell sequencing studies of human tissue.

library(msigdb)
library(GSEABase)

ls("package:msigdb")

# Download molecular signatures database."hs" for human and "mm" for mouse
msigdb.hs = getMsigdb(org = 'hs',id = c("SYM", "EZID"))
# Downloading and integrating KEGG gene sets
msigdb.hs = appendKEGG(msigdb.hs)
length(msigdb.hs)

# 可以根据需求选择子基因集
listCollections(msigdb.hs)
#hallmarks = subsetCollection(msigdb.hs, 'h')
#c3<- subsetCollection(msigdb.hs, 'c3')

#listSubCollections(msigdb.hs)

# 基因集列表
msigdb_ids <- geneIds(msigdb.hs) # GSEABase::geneIds
class(msigdb_ids)  # list

ms <- fread('ieu-b-18-data.txt') oa<- fread('FingerOA.txt') |--------------------------------------------------| |==================================================| |--------------------------------------------------| |==================================================| > head(ms) SNP CHR BP effect_allele other_allele P EAF BETA <char> <int> <int> <char> <char> <num> <num> <num> 1: rs62637812 1 51803 C T 0.8003000 0.001000000 -0.01826580 2: rs2462492 1 54676 T C 0.7979001 0.001257814 -0.01501210 3: rs28599927 1 62271 G A 0.8190000 0.001634987 -0.01176900 4: rs201684885 1 66162 T A 0.8140000 0.001000000 -0.01775670 5: rs13328683 1 74681 T G 0.8177000 0.001687966 0.01166780 6: rs1251109649 1 91536 T G 0.9769000 0.001000000 -0.00250313 SE samplesize <num> <int> 1: 0.0722086 115803 2: 0.0586260 115803 3: 0.0514308 115803 4: 0.0754741 115803 5: 0.0506186 115803 6: 0.0864472 115803 > head(oa) SNP CHR BP effect_allele other_allele P EAF BETA <char> <int> <int> <char> <char> <num> <num> <num> 1: rs62637812 1 51803 C T 0.8003000 0.001000000 -0.01826580 2: rs2462492 1 54676 T C 0.7979001 0.001257814 -0.01501210 3: rs28599927 1 62271 G A 0.8190000 0.001634987 -0.01176900 4: rs201684885 1 66162 T A 0.8140000 0.001000000 -0.01775670 5: rs13328683 1 74681 T G 0.8177000 0.001687966 0.01166780 6: rs1251109649 1 91536 T G 0.9769000 0.001000000 -0.00250313 SE samplesize <num> <int> 1: 0.0722086 115803 2: 0.0586260 115803 3: 0.0514308 115803 4: 0.0754741 115803 5: 0.0506186 115803 6: 0.0864472 115803。我要做MAGMA 基因分析确定oa和ms的 MAGMA 基因分析,通过在标记之间正确掺入 LD 来识别多效性基因,并检测多标记效应 (P < 0.05/18,345 = 2.73 × 10–6) [43]. 进行了 MAGMA 基因集分析以研究先导 SNP 的生物功能 [43],最终测试了来自分子特征数据库MSigDB) 的 10,678 个基因集,括精选基因集 (c2.all) 和 go 术语 (c5.bp、c5.cc 和 c5.mf) [44]。对所有测试的基因集进行 Bonferroni 校正以避免假阳性 (P < 0.05/10,678 = 4.68 × 10–6).Metascape webtools (metascape.org) 进行了通路富集分析,以确定基于 MSigDB 的定位基因的功能 [44]。对 54 个 GTEx 组织 [45] 进行了全基因组组织特异性富集分析,以获得 PLACO 生成的全基因组多效性结果。我们还计算了平均表达式 (log2转化的)在所有 54 个 GTEx 组织中 [45] 中所有已鉴定出的多效性基因 [45],并通过每个组织中的差异表达基因 (DEG) 测试组织特异性(上调和下调的 DEGs 由 t 统计量的符号预先计算)。具体列出详细方法步骤和R语言代码(括任何做分析可用到的软件和补充文件)。
03-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值