符号复习与一般偏序集的基础
1. 引言
在结构化数据挖掘领域,尤其是处理偏序集时,理解符号和术语是至关重要的。本文将回顾用于一般偏序集的关键符号和术语,确保读者对接下来更复杂概念的理解清晰。我们将从第五章中定义的符号表示和术语出发,逐步适应允许项目重复的一般模型。此外,我们还会重新定义和强调在处理一般模型时的新定义和差异,这些差异主要涉及态射的家族。
2. 符号和术语的回顾
2.1 回顾基本定义
在第五章中,我们定义了偏序集为有向图集合的一个完全子范畴。这里,我们将继续使用这些符号和术语,但会对其进行调整以适应一般模型。具体来说,我们定义一个有向图为一个三元组 ( G = (V, E, \lambda) ),其中 ( V ) 是顶点的集合,( E \subseteq V \times V ) 是边的集合,而 ( \lambda ) 是标记函数,将每个顶点映射到一个项目,即 ( \lambda : V \to I )。
2.2 标记函数的调整
在一般模型中,图的标记函数不再必须是单射,这意味着可能会有多个顶点被标记为相同的项目。具体来说,我们定义标记函数为 ( \lambda : V \to 2^I ),即将每个顶点映射到一个项目集,而不是单个项目。这使得我们能够处理同时出现的多个项目。例如:
项目 | 标签 |
---|---|
A | {a} |
B |