spark-alchemy中的HyperLogLog功能使用实践

本文介绍了如何在Spark中利用Spark-Alchemy的HyperLogLog功能进行UV计算。通过预先聚合减少数据量,提高分析效率。详细步骤包括添加maven依赖、准备测试数据、创建Hive表存储中间结果、SparkSQL写入和读取数据,并展示如何进行再聚合计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

利用HyperLogLog算法计算UV类指标是一种常用的方案。在spark中的approx_count_distinct函数就是基于HyperLogLog实现的,但其每次都需要从原始明细的数据进行计算,无法从中间结果进行再聚合。预先聚合是一种常用高性能分析的手段,可以极大地减少数据量。由于Spark没有提供相应功能,Swoop 开源了高性能的HLL native函数工具包,作为 spark-alchemy 项目的一部分,具体使用示例可以参考 HLL docs。spark-alchemy中的HLL sketch结构是可再聚合的,可以将其存储下来,通过预聚合大幅减少了要处理的数据量。

添加maven包依赖

在项目pom中添加maven包依赖:

<!-- https://mvnrepository.com/artifact/com.swoop/spark-alchemy -->
<dependency>
    <groupId>com.swoop</groupId>
    &l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值